FOREWORD

This workshop manual has been prepared to provide information regarding repair procedures on Hino Vehicle.

Applicable models: RB14 series, equipped with W04C-T engine

When making any repair on your vehicle, be careful not to be injured through improper procedures.
As for maintenance items, refer to the Driver’s Hand Book and Maintenance Guide.
All information and specifications in this manual are based upon the latest product information available at the time of printing.
Hino Motors reserves the right to make changes at any time without prior notice.
For matters regarding the engine, refer to manual No. S5-W04E04A

HINO MOTORS, LTD.
INDEX: CHASSIS GROUP 1/2

<table>
<thead>
<tr>
<th>General Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch</td>
</tr>
<tr>
<td>Clutch Control</td>
</tr>
<tr>
<td>Transmission</td>
</tr>
<tr>
<td>Transmission Control</td>
</tr>
<tr>
<td>Propeller Shaft</td>
</tr>
<tr>
<td>Differential Carrier</td>
</tr>
<tr>
<td>Rear Axle</td>
</tr>
<tr>
<td>Front Axle</td>
</tr>
<tr>
<td>Steering</td>
</tr>
<tr>
<td>Power Steering</td>
</tr>
<tr>
<td>Service Brake</td>
</tr>
<tr>
<td>Parking Brake</td>
</tr>
</tbody>
</table>

Hino Motors, Ltd.

All rights reserved. This manual may not be reproduced or copied in whole or in part, without the written consent of Hino Motors, Ltd.
CHAPTER GI

GENERAL INTRODUCTION

GENERAL PRECAUTIONS ... GI-2
HOW TO USE THIS WORKSHOP MANUAL...................... GI-4
IDENTIFICATION INFORMATION.............................. GI-5
TIGHTENING TORQUE OF STANDARD BOLT GI-6
GENERAL INTRODUCTION

GENERAL PRECAUTIONS

Some recommended and standard maintenance services for your vehicle are mentioned in this section. When performing maintenance on your vehicle be careful not to get injured by improper work. Improper or incomplete work can cause a malfunction of the vehicle which may result in personal injury and/or property damage. If you have any question about performing maintenance, please consult your Hino dealer.

WARNING

When working on your vehicle, observe the following general precautions to prevent personal injury and/or property damage in addition to the particular NOTES or WARNINGS.

Most threaded fasteners are metric.
Be careful not to mix with threaded fasteners using the inch system.

○ Always wear safety glasses or goggles to protect your eyes.
○ Remove rings, watches, ties, loose hanging jewelry and loose clothing before starting work on the vehicle.
○ Bind long hair securely behind the head.
○ When working on the vehicle, apply the parking brake firmly, place the transmission shift lever in neutral or “N”, and block the wheels.
○ Use safety stands to support the vehicle whenever you need to work under it. It is dangerous to work under a vehicle supported only by a jack.
○ To avoid serious burns, keep yourself away from hot metal parts such as the engine, exhaust manifold, radiator, muffler, exhaust pipe and tail pipe.
○ Keep yourself, your clothing and your tools away from moving parts such as the cooling fan and V-belts when the engine is running.
○ Always stop the engine by pulling out the engine stop knob. Leave the knob pulled out as long as the engine is stopped. And turn off the starter switch, unless the operation requires the engine running. Removing the key from the switch is recommended.
○ If it is necessary to run the engine, make sure that the parking brake is firmly applied, the wheels are blocked, and the transmission shift lever is in “Neutral” before starting the engine.
○ Run the engine only in a well-ventilated area to avoid inhaling of carbon monoxide.
○ Do not smoke while working on the truck since fuel and gages from the battery are flammable.
○ Take utmost care when working on the battery. It contains corrosive sulfuric acid.
○ Large electric current flows through the battery cable and starter cable. Be careful not to cause a short which can result in personal injury and/or property damage.
○ Be careful not to leave any tool in the engine compartment. The tool may be hit by moving parts and can cause personal injury.
○ Read carefully and observe the instructions placed on the jack when using it.
○ Be careful not to damage lines and hoses by stepping or holding your feet on them.
TOWING

When being toward, always place the transmission shift lever in Neutral and release the parking brake completely. In order to protect the bumper, fit a protection bar against the lower edge of the bumper and put a wood block under the frame near the No. 1 crossmember when attaching the towing chain. Never lift or tow the vehicle if the chain is in direct contact with the bumper.

1) Front end towing (with front wheels raised off the ground)
 When towing from the front end with the front wheels raised off the ground remove the rear axle shafts to protect the transmission and differential gears from being damaged. The hub openings should be covered to prevent the loss of axle lubricant or the entry of dirt or foreign matter.
 The above-mentioned precautions should be observed for vehicles equipped with either the manual or automatic transmission, and for even short distance towing. After being toward, check and refill the rear axle housing with lubricant if necessary.

2) Rear end towing
 When being towed with the rear wheels raised off the ground, fasten and secure the steering wheel in a straight-ahead position.
HOW TO USE THIS WORKSHOP MANUAL.

This workshop manual is designed as a guide for servicing vehicle.
An INDEX is provided on the first page of each chapter. TROUBLESHOOTING is dealt with each chapter. When beginning operations, refer to the sections on for a guide to appropriate diagnoses.

SPECIAL TOOLS are dealt with in each chapter. When ordering a special tool, make sure that the parts number is correct.

REPAIR PROCEDURES

Repair procedures which are self-explanatory such as simple installation and removal of parts have been omitted. Illustrations such as the one below have been provided to make such simple procedures clear. Only essential procedures requiring directions have been dealt with explicitly.

MAIN CYLINDER

EXAMPLE:

In some cases, illustrations may be of parts which differ in some nonessential way from the parts found on your particular vehicle. In such cases, however, the principal or procedure being illustrated applies regardless of such nonessential differences.
DEFINITION OF TERMS

Definition of vehicle left and right.
Left and right refers to the left and right sides of the vehicle as seen while looking down the center line from the rear towards the front.

IDENTIFICATION INFORMATION

CHASSIS SERIAL NUMBERS

Please quote these numbers when ordering spare parts or reporting technical matter as they will give you prompt service attention.

FRONT MOUNTED ENGINE

The chassis serial number is engraved on the left side frame near the front wheel.

REAR MOUNTED ENGINE

The chassis serial number is engraved on the left side frame at rear overhang.

CENTER UNDER FLOOR ENGINE

The chassis serial number is engraved on the left side frame near the front wheel.
Tightening Torque of Standard Bolt

<table>
<thead>
<tr>
<th>Bolt Identification</th>
<th>Tightening Conditions</th>
<th>Bolt Diameter (mm) 4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Even tightening area. Bolt nut, coating, naked bolt, lubricant, etc. Optimum conditions.</td>
<td>10 - 15 (0.8 - 1.0)</td>
<td>86 - 120 (3.6 - 4.5)</td>
<td>174 - 250 (6.8 - 9.8)</td>
<td>204 - 440 (7.8 - 16.8)</td>
<td>486 - 1,110 (16.1 - 36.1)</td>
<td>758 -1,110 (25.6 - 36.1)</td>
<td>1,940 - 3,130 (64.6 - 101.3)</td>
<td>1,940 - 3,130 (64.6 - 101.3)</td>
<td>2,020 - 2,980 (69.5 - 98.3)</td>
<td>2,560 - 3,750 (89.2 - 129.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cast iron or aluminum tightening surface. Washers. Medium conditions.</td>
<td>14 - 20 (1.1 - 1.4)</td>
<td>117 - 172 (4.7 - 6.7)</td>
<td>232 - 369 (9.0 - 14.4)</td>
<td>405 - 682 (15.2 - 26.2)</td>
<td>674 - 950 (23.9 - 31.9)</td>
<td>1,017 - 1,480 (37.8 - 55.1)</td>
<td>1,890 - 2,640 (66.1 - 92.2)</td>
<td>1,970 - 2,900 (67.0 - 94.1)</td>
<td>2,700 - 3,870 (93.1 - 128.9)</td>
<td>3,410 - 5,200 (118.4 - 172.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tightening area having black coarse surface. Rusty, Naked bolt or lubricant unavailable. Poor tightening conditions.</td>
<td>17 - 28 (1.3 - 1.8)</td>
<td>146 - 214 (5.6 - 8.4)</td>
<td>290 - 425 (11.3 - 16.5)</td>
<td>506 - 742 (18.9 - 27.8)</td>
<td>899 - 1,180 (32.8 - 43.8)</td>
<td>1,260 - 1,850 (45.8 - 63.8)</td>
<td>2,140 - 2,540 (74.4 - 90.4)</td>
<td>2,460 - 3,620 (84.8 - 113.5)</td>
<td>3,380 - 4,950 (113.5 - 167.3)</td>
<td>4,260 - 6,250 (147.0 - 206.5)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Even tightening area. Bolt nut, coating, naked bolt, lubricant, etc. Optimum conditions.</td>
<td>16 - 24 (1.2 - 1.7)</td>
<td>138 - 201 (5.3 - 7.6)</td>
<td>273 - 400 (10.7 - 15.5)</td>
<td>477 - 700 (17.9 - 26.8)</td>
<td>764 - 1,120 (27.9 - 37.1)</td>
<td>1,190 - 1,750 (43.9 - 60.3)</td>
<td>1,940 - 2,400 (68.6 - 83.2)</td>
<td>2,230 - 3,110 (76.5 - 103.6)</td>
<td>3,180 - 4,680 (108.9 - 153.1)</td>
<td>4,020 - 6,300 (139.2 - 204.3)</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Cast iron or aluminum tightening surface. Washers. Medium conditions.</td>
<td>22 - 32 (1.8 - 2.3)</td>
<td>183 - 270 (6.9 - 8.8)</td>
<td>364 - 532 (13.9 - 19.5)</td>
<td>636 - 932 (23.8 - 33.0)</td>
<td>1,020 - 1,500 (35.4 - 50.0)</td>
<td>1,590 - 2,320 (55.4 - 79.0)</td>
<td>2,180 - 3,200 (70.9 - 103.0)</td>
<td>3,100 - 4,550 (107.5 - 150.2)</td>
<td>4,250 - 6,310 (147.0 - 210.1)</td>
<td>5,360 - 7,850 (180.1 - 258.0)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Tightening area having black coarse surface. Rusty, Naked bolt or lubricant unavailable. Poor tightening conditions.</td>
<td>27 - 40 (2.0 - 2.8)</td>
<td>94 - 138 (3.6 - 5.2)</td>
<td>229 - 336 (8.5 - 12.5)</td>
<td>455 - 667 (16.8 - 23.8)</td>
<td>795 - 1,165 (28.3 - 39.9)</td>
<td>1,270 - 1,870 (43.1 - 62.1)</td>
<td>1,900 - 2,920 (60.5 - 92.9)</td>
<td>2,730 - 4,000 (86.9 - 126.1)</td>
<td>3,870 - 5,680 (128.3 - 180.3)</td>
<td>5,310 - 7,900 (176.5 - 258.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Even tightening area. Bolt nut, coating, naked bolt, lubricant, etc. Optimum conditions.</td>
<td>24 - 32 (1.8 - 2.3)</td>
<td>82 - 110 (3.2 - 3.9)</td>
<td>200 - 267 (7.8 - 9.5)</td>
<td>427 - 714 (14.3 - 23.4)</td>
<td>949 - 1,836 (33.0 - 60.0)</td>
<td>1,410 - 2,480 (47.1 - 81.5)</td>
<td>2,170 - 3,210 (70.0 - 105.0)</td>
<td>2,850 - 4,510 (92.1 - 149.1)</td>
<td>4,260 - 6,170 (140.3 - 205.4)</td>
<td>5,890 - 7,790 (193.1 - 250.3)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cast iron or aluminum tightening surface. Washers. Medium conditions.</td>
<td>32 - 43 (2.4 - 3.0)</td>
<td>116 - 146 (4.1 - 5.1)</td>
<td>267 - 356 (9.8 - 12.0)</td>
<td>529 - 706 (18.9 - 23.8)</td>
<td>1,050 - 1,320 (35.1 - 41.0)</td>
<td>1,480 - 1,870 (50.0 - 61.3)</td>
<td>2,310 - 3,060 (79.0 - 104.0)</td>
<td>3,170 - 4,320 (103.0 - 130.0)</td>
<td>4,510 - 6,010 (147.0 - 192.8)</td>
<td>6,170 - 8,230 (203.0 - 270.0)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Tightening area having black coarse surface. Rusty, Naked bolt or lubricant unavailable. Poor tightening conditions.</td>
<td>40 - 53 (2.8 - 3.4)</td>
<td>137 - 163 (5.1 - 6.0)</td>
<td>334 - 445 (12.0 - 15.0)</td>
<td>662 - 882 (23.1 - 29.0)</td>
<td>1,160 - 1,540 (37.3 - 44.3)</td>
<td>1,850 - 2,470 (63.3 - 83.9)</td>
<td>2,890 - 3,850 (94.0 - 127.0)</td>
<td>3,970 - 5,290 (127.0 - 170.0)</td>
<td>5,640 - 7,510 (188.0 - 245.0)</td>
<td>7,720 - 10,200 (256.0 - 330.0)</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: The torque values given in this table should be applied where bolt torque is not specified.
CHAPTER CL

CLUTCH

(DS300)

DATA AND SPECIFICATIONS CL-2
DESCRIPTION .. CL-2
TROUBLESHOOTING ... CL-3
SPECIAL TOOLS ... CL-4
CLUTCH UNIT .. CL-5
DATA AND SPECIFICATIONS

CLUTCH FACING
- **Type**: Dry single plate with damper spring
- **Outside diameter**: 300 mm (11.811 in)
- **Inside diameter**: 190 mm (7.480 in)
- **Thickness**: 4.0 mm (0.1575 in)
- **Area of engagement**: 423 cm\(^3\) (65.565 sq.in) x 2
- **Material**: Semi-moulded asbestos

CLUTCH SPRING
- **Spring type**: Diaphragm spring
- **Pressure force**: 750 kg (1,653 lb)

RELEASE BEARING
- **Description**: Single thrust ball

DESCRIPTION

1. Clutch disc hub
2. Rivet
3. Clutch facing
4. Clutch plate
5. Damper spring
6. Pressure plate
7. Cover
8. Strap plate
9. Strap plate bolt
10. Rivet
11. Compression spring
12. Pivot ring
13. Clip
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch dragging</td>
<td>Clutch disc runout or warped</td>
<td>Replace clutch disc.</td>
</tr>
<tr>
<td></td>
<td>Transmission input shaft worn</td>
<td>Replace input shaft and check clutch hub for excessive wear. If worn, replace disc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check flywheel housing alignment.</td>
</tr>
<tr>
<td>Clutch slipping</td>
<td>Diaphragm spring and release bearing clearance incorrectly adjusted</td>
<td>Adjust clearance.</td>
</tr>
<tr>
<td></td>
<td>Clutch disc facing gummed with oil or grease</td>
<td>Replace facing or disc assembly.</td>
</tr>
<tr>
<td></td>
<td>Release bearing worn</td>
<td>Replace bearing.</td>
</tr>
<tr>
<td></td>
<td>Clutch pedal free-play incorrectly adjusted</td>
<td>Adjust free-play.</td>
</tr>
<tr>
<td></td>
<td>Diaphragm spring weak or damaged</td>
<td>Replace clutch cover assembly.</td>
</tr>
<tr>
<td></td>
<td>Clutch facing worn</td>
<td>Replace facing or disc assembly.</td>
</tr>
<tr>
<td></td>
<td>Flywheel or pressure plate warped</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td>Vehicle vibrates when</td>
<td>Clutch control incorrectly adjusted</td>
<td>Adjust clutch control.</td>
</tr>
<tr>
<td>starting</td>
<td>Clutch disc facing gummed with oil or grease</td>
<td>Replace facing or disc assembly.</td>
</tr>
<tr>
<td></td>
<td>Glazed flywheel friction surface</td>
<td>Deglaze flywheel surface with coarse emery cloth, stroking parallel to machining lines.</td>
</tr>
<tr>
<td></td>
<td>Clutch disc distorted or warped</td>
<td>Replace disc.</td>
</tr>
<tr>
<td></td>
<td>Improper clutch cover tightening</td>
<td>Tighten bolts.</td>
</tr>
<tr>
<td></td>
<td>Flywheel housing misalignment</td>
<td>Replace flywheel housing.</td>
</tr>
<tr>
<td>Noisy clutch</td>
<td>Release bearing worn or dry</td>
<td>Replace release bearing.</td>
</tr>
<tr>
<td></td>
<td>Pilot bearing worn</td>
<td>Replace pilot bearing.</td>
</tr>
<tr>
<td></td>
<td>Clutch disc runout or warped</td>
<td>Replace clutch disc.</td>
</tr>
<tr>
<td></td>
<td>Flywheel housing misalignment</td>
<td>Replace flywheel housing.</td>
</tr>
<tr>
<td></td>
<td>Transmission input shaft or clutch disc spline worn</td>
<td>Clean and lubricate or replace.</td>
</tr>
<tr>
<td></td>
<td>Insufficient lubrication of pedal and its accessories</td>
<td>Lubricate.</td>
</tr>
<tr>
<td></td>
<td>Insufficient lubrication of release bearing hub</td>
<td>Lubricate.</td>
</tr>
<tr>
<td></td>
<td>Insufficient lubrication of clutch release lever and</td>
<td>Lubricate.</td>
</tr>
<tr>
<td></td>
<td>supporting parts</td>
<td></td>
</tr>
<tr>
<td>Symptom</td>
<td>Possible cause</td>
<td>Remedy/Prevention</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Noisy clutch</td>
<td>Clutch pedal free-play incorrectly</td>
<td>Adjust free-play.</td>
</tr>
<tr>
<td></td>
<td>adjusted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clutch disc damper springs fatigued</td>
<td>Replace the clutch disc.</td>
</tr>
<tr>
<td>Clutch pedal can not be</td>
<td>Clutch control incorrectly adjusted</td>
<td>Adjust clutch control.</td>
</tr>
<tr>
<td>depressed</td>
<td>Insufficient lubricant and release</td>
<td>Lubricate.</td>
</tr>
<tr>
<td></td>
<td>bearing hub.</td>
<td></td>
</tr>
<tr>
<td>Change in clutch pedal give</td>
<td>Air trapped in clutch fluid</td>
<td>Bleed air.</td>
</tr>
</tbody>
</table>

SPECIAL TOOLS

Prior to start the clutch overhaul, it is necessary to prepare following special tools.

- **CLUTCH ALIGNING ARBOR**
 - 09662-1020

- **PILOT BEARING PULLER**
 - 09650-1030

- **SLIDING HAMMER**
 - 09420-1442
CLUTCH UNIT

IMPORTANT POINT (S) – ASSEMBLY

REPLACE THE PILOT BEARING.

1. Remove the pilot bearing.
2. Using a suitable tapping rod, install the pilot bearing.

Special Tools: Pilot Bearing Puller (09650-1030)
Sliding Hammer (09420-1442)

NOTE: After installing the pilot bearing, insure that it rotates smoothly.

IMPORTANT POINT (S) – DISASSEMBLY

REMOVE THE CLUTCH COVER AND DISC.
Loosen the fitting bolts one turn at a time until spring tension is released.

WARNING
When removing the clutch cover and clutch disc, be careful not to drop them on your foot.
INSTALL THE CLUTCH DISC ON THE FLYWHEEL.
Special Tool: Clutch Aligning Arbor (09662-1020)

INSTALL THE CLUTCH COVER ASSEMBLY.
1. Insert the clutch cover aligning pins into the each place of clutch cover.
2. Tighten the bolts evenly. Make several presses around the cover until it is snug.

NOTE: Do not forget to install the four compression springs to the strap plate bolts.

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivet head depth.</td>
<td>1.5 mm (0.0591 in)</td>
<td>0.1 mm (0.0039 in)</td>
<td>Replace disc assembly or facings.</td>
<td>![Image]</td>
</tr>
<tr>
<td>Clutch disc runout.</td>
<td>0 — 1.0 mm (0 — 0.0393 in)</td>
<td>More than 1.0 mm (0.0393 in)</td>
<td>Replace disc assembly.</td>
<td>![Image]</td>
</tr>
<tr>
<td>Oily facings.</td>
<td></td>
<td></td>
<td>Replace facings or disc assembly, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Loose rivets.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Broken or loose damper spring.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clearance between clutch disc hub and transmission input shaft spline.</td>
<td>0.05 — 0.15 mm (0.0020—0.0059 in)</td>
<td>0.3 mm (0.0118 in)</td>
<td>Replace the clutch disc or the transmission input shaft.</td>
<td>![Image]</td>
</tr>
</tbody>
</table>
INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure plate runout.</td>
<td>Less than 0.1 mm (0.0039 in)</td>
<td>0.3 mm (0.0118 in)</td>
<td>Re grind friction surface or replace the clutch cover assembly.</td>
<td></td>
</tr>
<tr>
<td>Pressure plate thickness.</td>
<td>20 mm (0.787 in)</td>
<td>19 mm (0.748 in)</td>
<td>Replace the clutch cover assembly.</td>
<td></td>
</tr>
<tr>
<td>Pressure plate friction surface scoring or roughness.</td>
<td></td>
<td></td>
<td>Re grind the pressure plate friction surface or replace clutch cover assembly, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Flywheel runout.</td>
<td>0.1 mm (0.0039 in)</td>
<td></td>
<td>Re grind friction surface or replace.</td>
<td></td>
</tr>
<tr>
<td>Flywheel friction surface scoring or roughness.</td>
<td></td>
<td></td>
<td>Repair the friction surface or replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Pilot bearing improper rotation.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER CC
CLUTCH CONTROL

DATA AND SPECIFICATIONS CC-2
DESCRIPTION CC-2
SPECIAL TOOL CC-3
CLUTCH PEDAL AND RELEASE UNIT CC-4
CLUTCH MAIN CYLINDER CC-7
CLUTCH SLAVE CYLINDER CC-8
BLEEDING AND ADJUSTMENT CC-9
DATA AND SPECIFICATIONS

- **Main cylinder inside diameter**: 19.05 mm (3/4 in)
- **Slave cylinder inside diameter**: 22.22 mm (7/8 in)
- **Release bearing type**: Single thrust ball

DESCRIPTION

1. Clutch pedal
2. Switch
3. Main cylinder
4. Spring assembly
5. Release bearing
6. Pivot
7. Release lever
8. Slave cylinder
SPECIAL TOOLS

Prior to starting a clutch control overhaul, it is necessary to have these special tools.

BASE

09655-1080
Tightening torque: kg-cm (lb-ft)
Flare nut
6.35 mm dia. pipe: 160–240 (12–17)
8 mm dia. pipe: 330–360 (24–26)
10 mm dia. pipe: 400–500 (29–36)
Joint with copper washer
450–550 (33–39)

Bolt and nut
8 mm dia.: 190–260 (14–18)
10 mm dia.: 380–500 (28–36)
12 mm dia.: 650–870 (47–62)

1. Friction plate
2. Control tube bushing
3. Clutch pedal bracket
4. Pedal stopper
5. Connector
6. Main cylinder
7. Cotter pin
8. Plain washer
9. Clutch pedal
10. Pin
11. Switch
12. Tension spring
13. Pedal pad
14. Setting plate
15. Spring retainer
16. Adjuster rod
17. Spring seat
18. Compression spring
19. Clip
20. Clutch pedal buffer
21. Bushing
22. Release fork
23. Needle roller bearing
24. Pivot
25. Internal tooth lockwasher
26. Release bearing
27. Clutch bearing
28. Boot
29. Push rod
30. Slave cylinder
31. Antirattle spring

T = Tightening torque kg-cm (lb-ft)
IMPORTANT POINT (S) — ASSEMBLY

INSTALL THE CLUTCH PEDAL AND MAIN CYLINDER.
NOTE: Coat the bushing and clevis with lithium base grease.

INSTALL THE SPRING ASSEMBLY.
1. Assemble the spring and related parts.
NOTE: Coat the sliding surface with the chassis grease.
2. Install the spring assembly on the pedal pin and pedal bracket.
3. Adjust the spring height with the nut, when the pedal is released.
Assembly Standard: 31.7 mm (1.248 in)
4. Secure the nut with the nut.

REPLACE THE RELEASE FORK BEARING.
1. Remove the release fork bearings.
2. Using a special tool and a press, press in the bearing to the release fork.
Special Tool: Base (09655-1060)
3. Check the distance between both bearing.
Assembly Standard: More than 50 mm (1.968 in)
COAT CHASSIS GREASE OR HEAT RESISTANCE GREASE IN THE FOLLOWING POINTS.

1. Chassis grease
 a. Release fork and release bearing contact point.
 b. Release bearing hub inner groove.
 c. Release fork pivot bushing.
 d. Release fork and push rod contact point.

2. Heat resistance grease
 a. Transmission input shaft spline.

NOTE: Coat a small amount of grease to the spline.

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release bearing improper rotation</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Pivot, pivot bushing wear and damage.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Release fork bearing improper rotation, wear and damage.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Release fork and push rod contact point, wear and damage.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
</tbody>
</table>
CLUTCH MAIN CYLINDER

1. Control rod end
2. Lock nut
3. Push rod
4. Boot
5. Retaining ring
6. Thrust washer
7. Piston seal
8. Piston
9. Piston cup
10. Piston assembly
11. Return spring
12. Hose joint
13. Body
14. O-ring
15. Soft washer
16. Bolt

IMPORTANT POINT (S) — DISMOUNTING

REMOVE THE MAIN CYLINDER.

NOTE:
- Before remove the main cylinder, drain the clutch fluid from the hydraulic line.
- Place a small drain pan under the main cylinder to catch the hydraulic fluid. Do not let clutch fluid remain on a painted floor. Wash it off immediately.

IMPORTANT POINT (S) — ASSEMBLY

INSTALL THE RETURN SPRING AND PISTON TO THE MAIN CYLINDER.

NOTE: Lubricate the cylinder bore and piston with clean clutch fluid.

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston seal and cup wear,</td>
<td></td>
<td></td>
<td>Replace the piston assembly and/or cylinder body, if necessary.</td>
<td>Visuel check</td>
</tr>
<tr>
<td>damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder bore scoring,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>corrosion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IMPORTANT POINT (S) – DISMOUNTING

REMOVE THE SLAVE CYLINDER.

NOTE: O Before remove the slave cylinder, drain the clutch fluid from the hydraulic line.

IMPORTANT POINT (S) – ASSEMBLY

1. REPLACE SLAVE CYLINDER PISTON CUP AND PISTON SEAL.

NOTE: O Lubricate the new piston with clean clutch fluid. Take care not to damage the piston cup and seal, when installing them on the piston.

2. INSTALL THE PISTON TO THE SLAVE CYLINDER.

NOTE: Lubricate the cylinder bore and piston with clean clutch fluid.

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piston cup and seal wear, damage.</td>
<td></td>
<td></td>
<td>Replace the cup, seal, and/or cylinder body, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Cylinder bore scoring, corrosion.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BLEEDING AND ADJUSTMENT

BLEED THE AIR FROM HYDRAULIC LINE.

NOTE:
- Do not mix the clutch fluid with different types or brands.
- Be careful not to spill clutch fluid from the reservoir or from the air bleeder during air bleeding. Clutch fluid can damage the paint finish on the body or floor.
- There are two methods of air bleeding, gravity air bleeding and pressure air bleeding. If a pressure air bleeding equipment is on hand, its use is recommended.

Gravity bleeding
1. Connect a funnel to a bleeder hose.
2. Connect the other end of the bleeder hose to the bleeder screw.
3. Hold the funnel about 1.5m (4.92 ft) higher than the reservoir tank.
4. Loosen the bleeder screw and pour the clutch fluid into the funnel.
5. Observe the flow of clutch fluid into the reservoir tank.
6. When the air bubbles cease, close the bleeder screw.
7. Check the fluid level. If necessary, add or remove clutch fluid in order to match the "MAXI" level.

AFTER BLEEDING, MAKE SURE THE TRAVEL OF THE SLAVE CYLINDER PUSH ROD IS AS SPECIFIED.

Depress the clutch pedal fully and measure the push rod travel. If travel is less than standard, re-bleed the hydraulic system.

Standard: More than 21 mm (0.827 in)

CHECK THE PUSH ROD PLAY. IF NECESSARY, ADJUST THE PUSH ROD PLAY.

Standard:
- Clearance Between Push Rod and Piston: 0.5 mm (0.0197 in)
- Push Rod Play at Pedal Top: 2—4 mm (0.079—0.157 in)
CHECK THE CLUTCH PEDAL PLAY.

Push in on the pedal until the beginning of clutch resistance is felt.

Assembly Standard: 15—30 mm (1.969—2.559 in)

NOTE: The clutch pedal play is automatically maintained at normal operating conditions.

CHECK THE CLUTCH PEDAL HEIGHT AND STROKE.

Assembly Standard:

Pedal Height: 182—196 mm (7.166—7.716 in)
Pedal Stroke: 180—200 mm (7.087—7.874 in)

CHECK THE LENGTH "A". IF ITS LENGTH IS BELOW THE SERVICE LIMIT, IT IS TIME TO REPLACE THE CLUTCH FACING.

Service Limit: 23 mm (0.906 in)
CHAPTER TM

TRANSMISSION
(LE05S)

DATA AND SPECIFICATIONS TM- 2
DESCRIPTION TM- 3
TROUBLESHOOTING TM- 4
SPECIAL TOOL TM- 6
DISMOUNTING & MOUNTING TM- 7
GEAR SHIFT HOUSING TM-11
INPUT SHAFT, OUTPUT SHAFT, GEARS
AND RELATED PARTS TM-14
COUNTER SHAFT, REVERSE IDLER SHAFT
AND GEARS TM-21
DATA AND SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Five forward speeds, one reverse, 2, 3, 4, 5th Synchromesh, 1st and Reverse, Constantmesh.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Series No</td>
<td>LE05S [TYPE I]</td>
</tr>
<tr>
<td>Gear ratios:</td>
<td></td>
</tr>
<tr>
<td>1st</td>
<td>7.134</td>
</tr>
<tr>
<td>2nd</td>
<td>3.914</td>
</tr>
<tr>
<td>3rd</td>
<td>2.271</td>
</tr>
<tr>
<td>4th</td>
<td>1.419</td>
</tr>
<tr>
<td>5th</td>
<td>1.000</td>
</tr>
<tr>
<td>Reverse</td>
<td>6.151</td>
</tr>
<tr>
<td>Number of teeth-</td>
<td></td>
</tr>
<tr>
<td>Input shaft</td>
<td>24</td>
</tr>
<tr>
<td>Counter shaft:</td>
<td></td>
</tr>
<tr>
<td>1st gear</td>
<td>13</td>
</tr>
<tr>
<td>2nd gear</td>
<td>22</td>
</tr>
<tr>
<td>3rd gear</td>
<td>35</td>
</tr>
<tr>
<td>4th gear</td>
<td>42</td>
</tr>
<tr>
<td>Counter drive gear</td>
<td>53</td>
</tr>
<tr>
<td>Reverse gear</td>
<td>14</td>
</tr>
<tr>
<td>Output shaft:</td>
<td></td>
</tr>
<tr>
<td>1st gear</td>
<td>42</td>
</tr>
<tr>
<td>2nd gear</td>
<td>39</td>
</tr>
<tr>
<td>3rd gear</td>
<td>36</td>
</tr>
<tr>
<td>4th gear</td>
<td>27</td>
</tr>
<tr>
<td>Reverse gear</td>
<td>39</td>
</tr>
<tr>
<td>Reverse idle gear</td>
<td>29</td>
</tr>
<tr>
<td>Power take-off opening</td>
<td>On left side of gear case</td>
</tr>
<tr>
<td>Oil capacity, gear box</td>
<td>Approx 5.3 liters (1.17 Imp. gal./1.40 US gal)</td>
</tr>
<tr>
<td>Lubricant, type</td>
<td>Gear oil (APL GL-4, MIL-L-2105)</td>
</tr>
<tr>
<td>Viscosity: between -12 and 32°C (10 and 90°F)</td>
<td>SAE 90</td>
</tr>
<tr>
<td>above 32°C (90°F)</td>
<td>SAE 140</td>
</tr>
</tbody>
</table>
1. Input shaft
2. Front bearing retainer
3. Shift shaft
4. 4th gear
5. 4th-5th shift fork
6. 2nd gear
7. Steel ball
8. Neutral switch
9. Shift lever shaft
10. Shift lever shaft housing
11. 2nd-3rd shift fork
12. 3rd gear
13. 1st gear
14. 1st-Reverse shift fork
15. Reverse gear
16. Output shaft
17. O-ring
18. Nut
19. Universal joint flange
20. Oil seal
21. Speedometer driven gear
22. Transmission case
23. Rear bearing
24. 1st-Reverse constant sleeve
25. 2nd-3rd synchronizer sleeve
26. Counter shaft
27. 4th-5th synchronizer sleeve
28. Counter drive gear
29. Front bearing
30. Seal cover
31. Oil seal
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear slip-off</td>
<td>Control system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Joint worn and/or damaged</td>
<td>Replace joint</td>
</tr>
<tr>
<td></td>
<td>• Bolts and nuts loose</td>
<td>Tighten bolts and nuts</td>
</tr>
<tr>
<td></td>
<td>• Improper link rod adjustment</td>
<td>Adjust link rod</td>
</tr>
<tr>
<td>Gear shift housing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lock ball and spring distorted</td>
<td>Repair or replace as required</td>
</tr>
<tr>
<td></td>
<td>• Groove for shift shaft worn</td>
<td>Replace shift fork</td>
</tr>
<tr>
<td>Transmission gear</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Synchronizer hub and sleeve worn</td>
<td>Replace as required</td>
</tr>
<tr>
<td></td>
<td>• Synchronizer sleeve and gear</td>
<td>Replace as required</td>
</tr>
<tr>
<td></td>
<td>• Input shaft and/or output shaft</td>
<td>Replace bearing</td>
</tr>
<tr>
<td></td>
<td>• Retainer ring and/or thrust washer</td>
<td>Replace as required</td>
</tr>
<tr>
<td></td>
<td>• Loose transmission to engine</td>
<td>Tighten bolts</td>
</tr>
<tr>
<td>Difficult gear engagement</td>
<td>Engine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Engine idling speed too high</td>
<td>Adjust engine idling</td>
</tr>
<tr>
<td>Clutch</td>
<td>• Improper, disengagement of clutch</td>
<td>Adjust clutch</td>
</tr>
<tr>
<td></td>
<td>• Clutch disc sticking</td>
<td>Repair or replace</td>
</tr>
<tr>
<td></td>
<td>• Clutch shifter sleeve bent</td>
<td>Replace shifter sleeve</td>
</tr>
<tr>
<td>Difficult gear engagement</td>
<td>Transmission</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Input shaft and/or output shaft</td>
<td>Replace bearing</td>
</tr>
<tr>
<td></td>
<td>• Engine crankshaft pilot bearing</td>
<td>Replace bearing</td>
</tr>
<tr>
<td></td>
<td>• Synchronizer cone and ring worn</td>
<td>Replace as required</td>
</tr>
<tr>
<td>Symptom</td>
<td>Possible cause</td>
<td>Remedy/Prevention</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>Control system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Looseness of control system and/or improper adjustment</td>
<td>Tighten and adjust control system.</td>
<td></td>
</tr>
<tr>
<td>• Improper motion of gear shift lever</td>
<td>Adjust shift lever.</td>
<td></td>
</tr>
<tr>
<td>• Shift and select rod worn</td>
<td>Replace shift and select rod.</td>
<td></td>
</tr>
<tr>
<td>• Rigid relay shaft nylon bushing and/or sticking of shafts</td>
<td>Replace as required.</td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Improper lubrication of control lever</td>
<td>Lubricate as required.</td>
<td></td>
</tr>
<tr>
<td>• Shortage gear oil and/or low oil viscosity</td>
<td>Add oil or change oil as required.</td>
<td></td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Grinding in transmission</td>
<td>Check for screws, bolts or other foreign materials in transmission.</td>
<td></td>
</tr>
<tr>
<td>• Loose transmission to engine mounting bolts</td>
<td>Tighten bolts.</td>
<td></td>
</tr>
<tr>
<td>• Worn or damaged gear and bearing</td>
<td>Replace as required.</td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Shortage of gear oil and/or low oil viscosity</td>
<td>Add oil or change oil as required.</td>
<td></td>
</tr>
<tr>
<td>Gear oil leaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Leaks at the front and rear bearing</td>
<td>Repair and replace as required.</td>
<td></td>
</tr>
<tr>
<td>retainer seal and gasket, case cover gasket, sand hole of case or shift shaft expansion plug.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Improper amount of gear oil and lack of oil viscosity</td>
<td>Check oil level and type.</td>
<td></td>
</tr>
<tr>
<td>Unable to shift the gear or very difficult to shift when the engine is stopping.</td>
<td>Adjust the control rod.</td>
<td></td>
</tr>
<tr>
<td>Improper adjustment of the gear control rod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Looseness</td>
<td>Inspect and tighten each bolt and nut.</td>
<td></td>
</tr>
<tr>
<td>Gear slip-off when driving on bumpy roads.</td>
<td>Adjust the control rod.</td>
<td></td>
</tr>
<tr>
<td>Improper adjustment of the gear control rod.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The play of the lever is excessive.</td>
<td>Replace the joint.</td>
<td></td>
</tr>
<tr>
<td>A joint is seriously worn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The looseness of tightening bolt and nut.</td>
<td>Inspect and tighten each bolt and nut.</td>
<td></td>
</tr>
</tbody>
</table>
Prior to starting a transmission overhaul, it is necessary to have these special tools.

<table>
<thead>
<tr>
<th>Tool Type</th>
<th>Part Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOCKET WRENCH</td>
<td>09839-4104</td>
</tr>
<tr>
<td>SLIDING HAMMER</td>
<td>09420-1442</td>
</tr>
<tr>
<td>INPUT SHAFT PULLER</td>
<td>09650-1240</td>
</tr>
<tr>
<td>HOOK</td>
<td>09653-1170 09653-1160</td>
</tr>
<tr>
<td>PULLER</td>
<td>09650-1870 09650-2080</td>
</tr>
<tr>
<td>PULLER</td>
<td>09650-1491</td>
</tr>
</tbody>
</table>
DISMOUNTING & MOUNTING

T = 380-500 (28-36),
T = 650-870 (47-62)
T = 800-900 (58-65),
T = 650-850 (47-61)
T = 800-900 (58-65)
T = 800-900 (58-65)
T = 800-900 (58-65)

1. Clutch housing
2. Engine rear mounting subassembly
3. Engine rear mounting LH
4. Transmission assembly
5. Saft washer
6. Drain plug

IMPORTANT POINT (S) – DISMOUNTING

WARNING
Do not work on the transmission while it is still hot. This can result in personal injury.

BLOCK THE WHEELS.
DRAIN THE TRANSMISSION OIL.
DISCONNECT THE PROPELLER SHAFT.

REMOVE THE TRANSMISSION FLANGE LOCK NUT.
1. Lift the caulked part completely out of the shaft groove.
2. Using a special tool or commercial tool, remove the lock nut.

NOTE: Before loosening the lock nut, apply the parking brake so that the output shaft can not be turned.

Special Tool: Socket Wrench (09839-4104)
REMOVE THE PARKING BRAKE DRUM.
REMOVE THE FLANGE COUPLING.
REMOVE THE PARKING BRAKE WITH PARKING BRAKE CABLE.
1. Remove the parking brake fitting nuts.
2. Remove the parking brake with cable.

DISCONNECT THE ELECTRIC HARNESS AND THE SPEEDOMETER CABLE FROM THE TRANSMISSION.
DISCONNECT THE TRANSMISSION CONTROL CABLES WITH THE CABLE BRACKET.
DISCONNECT THE CLUTCH SLAVE CYLINDER.
DISCONNECT THE EXHAUST PIPE FROM THE EXHAUST MANIFOLD.

REMOVE THE TRANSMISSION.
1. Remove the lower bolts around the clutch housing.
2. Place a transmission jack under the transmission.
3. Remove the rear engine mounting fitting nuts.
4. Lower the transmission jack until the rear engine mounting stud bolts come out from the cross member.
5. Support the engine by locating a jack or a safety stand under the flywheel housing.
6. Remove the remaining bolts around the clutch housing.
7. Pull the transmission backwards. Lower the transmission jack and pull the transmission out.

WARNING
The engine should be suspended with a hoist before removing the transmission from the vehicle.

IMPORTANT POINT (S) – MOUNTING

INSTALL THE REAR ENGINE MOUNTING ON THE TRANSMISSION.
1. Clean the contact surface of the mounting brackets and the transmission case.
2. Install the mounting bracket on both sides of the transmission case.
3. Finger tighten the fitting bolts.
4. Check that B and C are flush with the transmission case, then tighten completely.
5. Install the rear mounting on the mounting bracket and tighten the fitting bolts.

NOTE: Make sure to position the wide side of the rear engine mounting rearward.
TRANSMISSION

APPLY A HEAT-RESISTANT GREASE TO THE INPUT SHAFT SPLINE.

INSTALL THE TRANSMISSION.
1. Jack up the transmission until the input shaft and the clutch disc spline align.
2. Slip the transmission in and attach the clutch housing to the engine.
3. Install the upper fitting bolts around the clutch housing.
4. Install the rear engine mounting on the cross member by lifting the transmission with a jack.

NOTE: When installing the mounting on the cross member, install it by inserting a screw-driver through the guide holes on the mounting and the cross member and positioning the long holes on the cross member with the stud bolts of the mounting. If the stud bolts are damaged by accident be sure to rethread them or replace the rear engine mounting.

5. Install the mounting fitting nuts.
6. Lower the transmission jack and pull the jack out.
7. Install the remaining bolts around the clutch housing.
8. Tighten the transmission fitting bolts around the clutch housing.

INSTALL THE CLUTCH SLAVE CYLINDER.
CONNECT THE TRANSMISSION CONTROL CABLES.
CONNECT THE ELECTRIC HARNESS AND THE SPEEDOMETER CABLE TO THE TRANSMISSION.
CONNECT THE EXHAUST PIPE TO THE EXHAUST MANIFOLD.

INSTALL THE PARKING BRAKE.
Install the parking brake with the cable and tighten the fitting nuts.

INSTALL THE FLANGE COUPLING.
INSTALL THE PARKING BRAKE DRUM.

NOTE: Secure the parking brake drum with a propeller shaft fitting bolts and nuts.

INSTALL THE TRANSMISSION FLANGE LOCK NUT.
1. Install the O-ring in the flange coupling.
2. Install the lock nut on the output shaft and tighten it.

NOTE:
- Before tightening the lock nut, apply the parking brake so that shaft can not be turned.
- Do not damage the O-ring.

Special Tool: Socket Wrench (09839-4104)
IMPORTANT POINT (S) — DISASSEMBLY

DISASSEMBLE THE TRANSMISSION CASE COVER.

WARNING
The steel ball may fly out from the hole when removing the shift shaft. Wear safety glasses during removal.

1. Clamp the case cover in a soft jaws vise.
2. Remove the Back-up lamp switch.
3. Set each shift shaft in the neutral position.
4. Remove the lock wires and remove the set screws from each shift fork and shift head.
5. Using a tapping rod and hammer, remove the expansion plugs from the ends of the case cover.

IMPORTANT POINT (S) — ASSEMBLY

INSTALL THE OIL SEAL.

1. Coat the sealing surface between the seal lips with chassis grease.
2. Drive the new oil seal into the shift lever shaft housing with the installation tool.

NOTE:
- Take care not to damage the seal lip.
- Be sure the oil seal is inserted in the proper direction.

INSTALL THE STEEL BALL, COMPRESSION SPRING, SHIFT SHAFT, SHIFT FORK AND SHIFT HEAD.

1. Place the bail and spring in the hole.
2. Depress the ball and spring with a suitable tool.
3. Apply gear oil to the shift shaft.
4. Align the shift fork and head and put the shift shaft through, and then slide the shift shaft over the ball.
5. Place the shift shaft in neutral.

NOTE:
- Pay special attention to the position and direction of the shift fork and shift head.
- For 2nd-3rd shift shaft, insert the interlock pin. Apply grease to the interlock pin.

WARNING
The steel ball may fly out of the hole when installing the shift shaft. Wear safety glasses during installation.
INSTALL THE SET SCREW.
1. Align the shift head hole and shift fork hole with the shift shaft hole
2. Secure the shift head and shift fork to the shift shaft with the set screws.
3. Secure the set screw with wire.

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance between shift fork and sleeve.</td>
<td>0.2—0.45 mm</td>
<td>1.0 mm</td>
<td>Replace.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0079—0.0177 in)</td>
<td>(0.0394 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shift shaft, interlock pin and interlock plunger wear or damage.</td>
<td>—</td>
<td>—</td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Shift head and inner shift lever wear or damage.</td>
<td>—</td>
<td>—</td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Oil seal lip wear or damage.</td>
<td>—</td>
<td>—</td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
</tbody>
</table>
INPUT SHAFT, OUTPUT SHAFT, GEARs AND RELATED PARTS

1. Shim
2. Retainer ring
3. Cylindrical roller bearing
4. Input shaft
5. Needle roller bearing
6. Spacer
7. Synchronizer cone
8. Synchronizer ring
9. Compression spring
10. Synchronizer head
11. Synchronizer key
12. Synchronizer hub
13. Synchronizer sleeve
14. 4th gear
15. Bushing
16. 2nd gear
17. 3rd gear
18. Thrust washer
19. Reverse gear
20. Constant sleeve
21. Straight pin
22. Output shaft
23. 1st gear
24. Oil seal
25. Dust deflector
26. Universal joint flange
27. O-ring
28. Lock nut
29. Front bearing retainer
30. Gasket
31. Transmission case
32. Soft washer
33. Filler plug
34. Drain plug
35. Speedometer drive gear
36. Speedometer driven gear bushing
37. Set screw
38. Speedometer driven gear
39. Rear bearing retainer

T = Tightening torque: kg-cm (lb.ft)

T = 650–870 (47–62)

T = 2,500–3,000 (181–216)

T = 83–110 (6.1–7.9)

T = 380–500 (28–36)
IMPORTANT POINT (S) – DISASSEMBLY

REMOVE THE INPUT SHAFT.

1. Using a special tool, pull out the input shaft with the accompanying bearings.

 Special Tool: Input Shaft Puller (09650-1240)
 Sliding Hammer (09420-1442)

REMOVE THE OUTPUT SHAFT REAR BEARING.

1. Remove the retainer ring from the output shaft rear bearing.
2. Attach a special tool to the bearing.

 Special Tools: Hook (09653-1170)
 Puller (09650-1870)

 NOTE: Insert the hook's click into the groove for the retainer ring, then secure the puller to the hook with bolts. Secure the puller so that it does not turn, then rotate the bolt to pull the bearing out.

DRIVE THE COUNTER SHAFT INTO THE TRANSMISSION CASE.

1. Remove the retainer ring from the counter shaft rear bearing.
2. Using a soft hammer, drive the rear end of the counter shaft into the transmission case [approximately 1.5 mm (0.059 in)].

ATTACH A JIG TO THE END OF THE OUTPUT SHAFT.

WARNING
If the output shaft assembly is removed from the transmission without a jig, the 1st gear will drop from the shaft and possibly result in personal injury.
REMOVE THE OUTPUT SHAFT ASSEMBLY FROM THE CASE.
1. Attach a suitable hook or other lifting device around the 2nd-3rd speed synchronizer sleeve and carefully lift the output shaft assembly from the transmission case.
2. When removing the output shaft assembly, remove the synchronizer ring and the cone of the input shaft gear.

IMPORTANT POINT (S) — ASSEMBLY

ASSEMBLE THE SYNCHRONIZER UNIT.
1. Install the compression spring.

WARNING
The compression spring is spring steel and may fly out of the hole during assembly. Wear safety glasses during assembly.

INSTALL THE RETAINER RINGS TO RING GROOVE OF EACH POSITION ON THE OUTPUT SHAFT.
1. Select a retainer ring that will provide tight fit.

NOTE: Always use a new retainer ring.
Make sure that the retainer ring seats in the groove.

Retainer rings are available in the following sizes.

<table>
<thead>
<tr>
<th>Position A</th>
<th>Thickness (in)</th>
<th>Color code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.45 mm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>2.55 mm</td>
<td>Blue</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position B</th>
<th>Thickness (in)</th>
<th>Color code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.45 mm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>2.55 mm</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>2.65 mm</td>
<td>Green</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position C</th>
<th>Thickness (in)</th>
<th>Color code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.9 mm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>2.0 mm</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>2.1 mm</td>
<td>Green</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Position D</th>
<th>Thickness (in)</th>
<th>Color code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.95 mm</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>2.05 mm</td>
<td>White</td>
<td></td>
</tr>
<tr>
<td>2.15 mm</td>
<td>Green</td>
<td></td>
</tr>
</tbody>
</table>
ATTACH A JIG TO THE END OF OUTPUT SHAFT.

WARNING
If the output shaft assembly is installed into the transmission without a jig, the 1st gear will drop from the shaft and possibly result in personal injury.

INSTALL THE CYLINDRICAL BEARING.
1. Using a press, install the cylindrical bearing to the input shaft.

 NOTE:
 - When installing the bearing side ring, place the side with the larger chamfering closest to the gear.
 - Do not put any pressure on the outer race.

2. Select a retainer ring that will provide tight fit.

 NOTE: Always use a new retainer ring.

 Make sure that the retainer ring seats in the groove.

 Retainer rings are available in the following sizes.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Color code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.90 mm (0.0748 in)</td>
<td>None</td>
</tr>
<tr>
<td>2.00 mm (0.0787 in)</td>
<td>White</td>
</tr>
<tr>
<td>2.10 mm (0.0827 in)</td>
<td>Red</td>
</tr>
<tr>
<td>2.20 mm (0.0866 in)</td>
<td>Yellow</td>
</tr>
<tr>
<td>2.30 mm (0.0906 in)</td>
<td>Blue</td>
</tr>
</tbody>
</table>

INSTALL THE ROLLER BEARING IN THE COUNTERBORE OF THE INPUT SHAFT.
1. Apply gear oil to the bearings.
2. Place spacers at both ends of the bearings.
3. Install the retainer ring.

 NOTE: Always use roller bearings of uniform diameter (14 pieces by set). There are 3 types of roller bearings in different diameters. These are distinguished by the colors red, blue, and white.

REPLACE THE OIL SEAL OF THE FRONT BEARING RETAINER AND REAR BEARING RETAINER.
1. Using a screw driver, remove the oil seal from bearing retainer.
2. Using a press and a suitable installing tool, press the oil seal into the bearing retainer.

 NOTE:
 - Coat gear oil to oil seal surface.
 - Be sure the oil seal is installed in the proper direction.

3. Coat chassis grease to the sealing surface between the seal lips.
ASSEMBLE THE REAR BEARING RETAINER.
1. Install the speedometer driven gear with bushing into the retainer.

NOTE:
- Coat chassis grease to the O-ring, oil seal and driven gear.
- Be sure the oil seal is installed in the proper direction when replacing it.

2. Match the mark line on the speedometer drive gear bushing with the mark line on the bearing retainer.

<table>
<thead>
<tr>
<th>No. of the drive gear teeth</th>
<th>No. of the driven gear teeth</th>
<th>The mark should be matched to the mark on rear cover</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>11</td>
<td>One line</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Two lines</td>
</tr>
<tr>
<td>12, 13</td>
<td></td>
<td>Three lines</td>
</tr>
<tr>
<td>17</td>
<td>15, 16</td>
<td>Two lines</td>
</tr>
<tr>
<td>19, 20</td>
<td></td>
<td>Three lines</td>
</tr>
</tbody>
</table>

INSTALL THE OUTPUT SHAFT ASSEMBLY IN THE TRANSMISSION CASE.
1. Attach a suitable hook around the 2nd-3rd synchronizer sleeve and carefully lower the output shaft assembly into the case.
2. Position the output shaft gears so that they mesh with mating countershaft gears.
3. When installing the output shaft assembly, install the synchronizer ring and cone of the input shaft gear.

CHECK THE CLEARANCE BETWEEN FRONT BEARING RETAINER AND FRONT SURFACE OF CASE.
1. Tighten bolts temporarily by hand without gasket.
2. Check the clearance and adjust the clearance with shims.

Assembly Standard: 0.25—0.4 mm (0.0099—0.0157 in)

Shims are available in following sizes.

<table>
<thead>
<tr>
<th>Shim thickness</th>
<th>0.05 mm</th>
<th>0.10 mm</th>
<th>0.20 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.0019 in)</td>
<td>(0.0039 in)</td>
<td>(0.0078 in)</td>
</tr>
</tbody>
</table>

INSTALL THE FRONT BEARING RETAINER.

NOTE:
- When installing the bearing retainer, the gasket must be installed in such a way that the gasket notch matches the oil drain hole on the case so as not to block the hole.
- Apply liquid sealer or sealing tape to bolt thread.
- Apply sealing compound to both sides of gasket.
INSTALL THE REAR BEARING RETAINER.
Install the rear bearing retainer.
NOTE:
- Apply liquid sealer or sealing tape to bolt thread.
- Apply sealing compound to both sides of gasket.

MEASURE THE GEAR BACKLASH. (A)
1. Block the countershaft with a ply bar when measuring.
2. Measure the gear backlash at four points of each gear.

Assembly Standard

<table>
<thead>
<tr>
<th>Input shaft gear</th>
<th>3rd gear</th>
<th>4th gear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.04—0.10 mm</td>
<td>(0.0016—0.0039 in)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st gear</th>
<th>2nd gear</th>
<th>Reverse gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06—0.14 mm</td>
<td>(0.0024—0.0055 in)</td>
<td></td>
</tr>
</tbody>
</table>

Service Limit

All gears: 0.4 mm (0.0157 in)

MEASURE THE GEAR END PLAY. (B)

Assembly Standard

<table>
<thead>
<tr>
<th>1st gear</th>
<th>2nd gear</th>
<th>3rd gear</th>
<th>4th gear</th>
<th>Reverse gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.16—0.31 mm</td>
<td>0.15—0.30 mm</td>
<td>0.15—0.33 mm</td>
<td>0.15—0.40 mm</td>
<td>0.15—0.30 mm</td>
</tr>
<tr>
<td>(0.0063—0.0122 in)</td>
<td>(0.0060—0.0118 in)</td>
<td>(0.0060—0.0129 in)</td>
<td>(0.0060—0.0157 in)</td>
<td>(0.0060—0.0118 in)</td>
</tr>
</tbody>
</table>

Service Limit

All gears: 0.5 mm (0.0197 in)

MEASURE THE RADIAL PLAY OF EACH GEAR. (C)

Assembly Standard

<table>
<thead>
<tr>
<th>1st gear</th>
<th>2nd gear</th>
<th>3rd gear</th>
<th>4th gear</th>
<th>Reverse gear</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.024—0.070 mm</td>
<td>0.020—0.111 mm</td>
<td>0.024—0.070 mm</td>
<td>0.018—0.062 mm</td>
<td>0.020—0.070 mm</td>
</tr>
<tr>
<td>(0.0010—0.0027 in)</td>
<td>(0.0008—0.0043 in)</td>
<td>(0.0010—0.0027 in)</td>
<td>(0.0008—0.0024 in)</td>
<td>(0.0008—0.0027 in)</td>
</tr>
<tr>
<td>Inspection Item</td>
<td>Standard</td>
<td>Limit</td>
<td>Remedy</td>
<td>Inspection Procedure</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Synchronizer ring, deformity, crack, or excessive damage.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Gear excessive wear, chips, or cracks.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Clearance between synchronizering and synchronizer cone.</td>
<td>1.7—2.3 mm (0.0670—0.0905 in)</td>
<td>0.2 mm (0.0079 in)</td>
<td>Replace the synchronizer ring and/or cone.</td>
<td></td>
</tr>
<tr>
<td>Oil seal lip wear or damage.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Cylindrical bearing, and ball bearing improper rotation.</td>
<td></td>
<td></td>
<td>Replace the parts, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Needle roller bearing out-of round or rough.</td>
<td></td>
<td></td>
<td>Replace the parts, if necessary.</td>
<td>Visual check</td>
</tr>
</tbody>
</table>
COUNTER SHAFT, REVERSE IDLER SHAFT AND GEARS

IMPORTANT POINT (S) – DISASSEMBLY

REMOVE THE REVERSE IDLER SHAFT.
Special Tools: Sliding hummer (09420-1442)

REMOVE THE COUNTER SHAFT REAR BEARING.
1. Remove the retainer ring.

WARNING
The retainer ring is spring steel and may fly out of the groove during removal. Wear safety glasses during removal.

1. Cylindrical roller bearing
2. Retainer ring
3. Counter drive gear
4. Counter 4th gear
5. Woodnuff key
6. Counter shaft
7. Reverse idler gear
8. Needle roller bearing
9. O-ring
10. Reverse idler gear shaft
11. Thrust washer
12. Lock plate
13. Seal cover
14. Gasket
15. Power take-off cover

T = Tightening torque kg-cm (lb.ft)
2. Install special tools on the rear cylindrical bearing.
 Special Tools: Hook (09653-1160)
 Puller (09650-2080)
 NOTE: Insert the hook's click into the groove for the retainer ring
 then secure the puller to the hook with bolts. Secure the
 puller so that it does not turn, then rotate the bolt to pull
 the bearing out.

REMOVE THE COUNTER SHAFT FROM THE TRANSMISSION
CASE.
1. Tie a rope or hook around the countershaft and carefully pry
 the countershaft assembly rearward until the front end of the
 shaft is clear of the front cylindrical bearing.
2. Carefully lift the countershaft assembly from the case.

REMOVE THE INNER RACE.
1. Using a special tool on the inner race, pull out the front
 cylindrical bearing inner race from the counter shaft.
 Special Tools: Puller (09650-1491)

REMOVE THE RETAINER RING.

 WARNING
 The retainer ring is spring steel and may fly out of the groove
during removal. Wear safety glasses during removal.

REMOVE THE COUNTER SHAFT GEARS.
1. Support the counter shaft drive gear as close as possible to the
 gear hub and press the counter shaft front end until it is free
 of the drive gear.
2. Support the counter 4th gear under the gear teeth and press
 the counter shaft out of the gear.
 WARNING
 Stay out from under the shaft during removal.
The shaft could drop suddenly resulting in personal injury.
IMPORTANT POINT (S) – ASSEMBLY

INSTALL THE COUNTER DRIVE GEAR AND COUNTER 4TH GEAR.

1. Select the proper size key according to the condition of the key groove.

<table>
<thead>
<tr>
<th>Thickness (T)</th>
<th>Shape</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.015–7.024 mm (0.2762–0.2765 in)</td>
<td>![Shape]</td>
</tr>
<tr>
<td>7.055–7.065 mm (0.2778–0.2781 in)</td>
<td>![Shape]</td>
</tr>
</tbody>
</table>

2. Press the counter shaft into the gears making certain that the key and keyway are aligned.

NOTE: Be sure the gears are installed in the proper direction.

SELECT A RETAINER RING THAT WILL PROVIDE A TIGHT FIT AND INSTALL IT ON THE SHAFT.

NOTE: Always use a new retainer ring.
Make sure that the retainer ring seats in place.

Retainer rings are available in the following size.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Color code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.25 mm (0.0886 in)</td>
<td>None</td>
</tr>
<tr>
<td>2.35 mm (0.0925 in)</td>
<td>White</td>
</tr>
<tr>
<td>2.45 mm (0.0965 in)</td>
<td>Green</td>
</tr>
<tr>
<td>2.55 mm (0.1004 in)</td>
<td>Brown</td>
</tr>
<tr>
<td>2.65 mm (0.1043 in)</td>
<td>Sky blue</td>
</tr>
</tbody>
</table>

POSITION DISTANCE, INSPECT THE “A”, OF THE FRONT BEARING OUTER RACE FROM THE GEAR CASE FRONT SURFACE.

Assembly Standard: 5.7 – 6.2 mm (0.2245 – 0.2440 in)

NOTE: Before place the counter shaft in position, install the input shaft and output shaft into the transmission case.

PRESS IN THE COUNTER FRONT COVER AND BEARING IT FLUSH WITH THE CASE FRONT.

INSTALL THE THRUST WASHER AND LOCK PLATE.

1. Install the thrust washer and lock plate or rear end of counter shaft.
2. Tighten the bolts and secure the bolts by folding the lock plate.
MEASURE THE REVERSE IDLER GEAR END PLAY.
Assembly Standard: 0.15 – 0.40 mm (0.0060 – 0.0157 in)
Service Limit: 0.5 mm (0.0197 in)

MEASURE THE BACKLASH BETWEEN THE REVERSE IDLER GEAR AND THE COUNTER SHAFT REVERSE GEAR.
Assembly Standard: 0.06 – 0.14 mm (0.0023 – 0.0055 in)
Service Limit: 0.40 mm (0.0157 in)

MEASURE THE REVERSE IDLER GEAR RADIAL PLAY.
Assembly Standard: 0.009 – 0.050 mm (0.0004 – 0.0019 in)

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>All gears for cracks or defects.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Idler gear, shaft, and needle roller bearing for wear or damage.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Counter shaft wear, chips or cracks.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Counter shaft key way and damage or looseness.</td>
<td></td>
<td></td>
<td>Replace the counter shaft and/or key. If necessary.</td>
<td>Visual check</td>
</tr>
</tbody>
</table>
CHAPTER TC

TRANSMISSION CONTROL

TROUBLESHOOTING .. TC-2
TRANSMISSION CONTROL TC-3
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unable or difficult to shift gears when engine is off.</td>
<td>Improper adjustment of gear control linkage.</td>
<td>Adjust control linkage.</td>
</tr>
<tr>
<td></td>
<td>Loose bolts and nuts</td>
<td>Inspect and tighten each bolt and nut.</td>
</tr>
<tr>
<td></td>
<td>Joints and pins worn and/or damaged</td>
<td>Replace joints and pins.</td>
</tr>
<tr>
<td></td>
<td>Control cable damaged</td>
<td>Replace control cable.</td>
</tr>
<tr>
<td>Slips out of gears when driving bumpy roads.</td>
<td>Improper adjustment of gear control linkage.</td>
<td>Adjust control linkage.</td>
</tr>
<tr>
<td>Lever play is excessive</td>
<td>Seriously worn joints or cable</td>
<td>Replace joints or cable.</td>
</tr>
<tr>
<td></td>
<td>Loose bolts and nuts</td>
<td>Inspect and tighten each bolt and nut.</td>
</tr>
</tbody>
</table>
1. Shift lever knob
2. Shift lever
3. Shift lever boot
4. Retainer ring
5. Thrust washer
6. Ball joint seat
7. Gasket
8. Shift lever housing
9. Set screw
10. Setting plate
11. Transmission control cable
12. Clip
13. Shift lever sub-assembly
14. Collar
15. Bushing
16. Expansion plug
17. Gear control lever assembly
18. Dust cover
19. Retainer
20. Cross shaft bracket sub-assembly
21. Control rod end
22. Link rod
23. Spacer
24. Dust boot
25. Grommet

Tightening torque: kg-cm (lb.ft)
8 mm diameter bolt and nut: 190—260 (14—18)
10 mm diameter bolt and nut: 380—500 (28—36)
12 mm diameter bolt and nut: 650—870 (47—62)
IMPORTANT POINT(S) — ASSEMBLY

ASSEMBLE THE GEAR SHIFT LEVER.

- Install the lower thrust washer.
- Install the lower retainer ring using a snap ring plier.

NOTE: Retainer rings are installed as shown illustration.

WARNING
The retainer ring is spring steel and may fly out of the ring groove during installation. Wear safety glasses during installation.

- Install the lower boot.
- Install the upper ball joint seat.

NOTE:
- The upper ball joint seat is installed as shown illustration.
- Apply chassis grease on both sides of the ball joint seats.

- Install the upper thrust washer and retainer ring.

NOTE: Apply chassis grease 40 g (1.4 oz) in the shift lever housing.

IMPORTANT POINT(S) — MOUNTING

INSTALL THE CONTROL CABLES.

NOTE: Make sure that white lines on the cable end boots are straight, not twisted.

ADJUST THE NEUTRAL POSITION OF THE SHIFT LEVER.

1. Adjust the link rod length "A".

Assembly Standard: 196 mm (7.717 in)
2. Check the position "B" of shift lever exactly perpendicular at its neutral position.

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control cable boot crack or damage</td>
<td>–</td>
<td>–</td>
<td>Replace, if necessary</td>
<td></td>
</tr>
<tr>
<td>Shift lever sub-assembly bush wear</td>
<td>–</td>
<td>–</td>
<td>Replace, if necessary</td>
<td></td>
</tr>
<tr>
<td>Rubber boots crack or damage</td>
<td>–</td>
<td>–</td>
<td>Replace, if necessary</td>
<td></td>
</tr>
<tr>
<td>Ball joint seat, control rod end wear or damage</td>
<td>–</td>
<td>–</td>
<td>Replace, if necessary</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER PP

PROPELLER SHAFT

DATA & SPECIFICATIONS .. PP-2
DESCRIPTION ... PP-2
TROUBLESHOOTING .. PP-3
PROPELLER SHAFT .. PP-4
DATA AND SPECIFICATIONS

- **Type**: Tubeless shaft type
- **Universal joint**: All metal, round bearing type with needle roller bearing.
- **Series No.**: LC0000

Needle roller bearing:
- **Outer diameter**: 2.5 mm (0.0984 in)
- **Length**: 19.8 mm (0.7795 in)
- **Q'ty**: 33

DESCRIPTION

- 1. Universal joint yoke
- 2. Sliding yoke sub assembly
- 3. Dust seal
- 4. Sleeve yoke sub assembly
- 5. Lubrication fitting
- 6. Phasing arrow
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal vibration when driving</td>
<td>Looseness of universal joint yoke and flange tightening nuts.</td>
<td>Tighten the nuts.</td>
</tr>
<tr>
<td></td>
<td>Excessive propeller shaft runout</td>
<td>Replace the shaft.</td>
</tr>
<tr>
<td></td>
<td>Worn or damaged universal joint</td>
<td>Replace the universal joint.</td>
</tr>
<tr>
<td></td>
<td>Incorrect phasing of the yokes</td>
<td>Match the phasing arrows correctly.</td>
</tr>
</tbody>
</table>
PROPELLER SHAFT

1. Universal joint yoke
2. Sliding yoke sub assembly
3. Dust seal
4. Sleeve yoke sub assembly
5. Retainer ring
6. Universal joint spider
7. Thrust washer
8. Oil seal
9. Needle roller bearing
10. Lubrication fitting

IMPORTANT POINT — DISMOUNTING

DISCONNECT THE PROPELLER SHAFT FROM THE FLANGE ON THE DIFFERENTIAL AND TRANSMISSION.

1. Draw the match marks on the flange and yoke.
2. Remove nuts and bolts.
IMPORTANT POINT — DISASSEMBLY

DISASSEMBLE THE UNIVERSAL JOINT.
1. Remove the retainer ring from the yoke.
2. Position the yoke under the arbor press and push universal joint partially out of the yoke lug.
 The bearing is protruded from the yoke.
3. Place the propeller shaft assembly in a vice, gripping protruding bearing with vice. Tap on the yoke in area shown to achieve removal of universal joint bearing.
4. Place the yoke under arbor press with opposite side of universal joint spider in up position and place small push tool on the universal joint spider end.
5. Press the opposite bearing out of the yoke lug.
6. Remove the spider from the yoke.
7. Remove the bearing from the yoke lug.

NOTE: Keep the original location of the bearings, thrust washers, spider and retainer rings in mind. These parts have to be replaced in the same position as before disassembly when re-assembly.

DISASSEMBLE THE DUST SEAL.
1. Remove the sliding yoke.
2. Remove the dust seal.

IMPORTANT POINT — ASSEMBLY

ASSEMBLE THE UNIVERSAL JOINT BEARINGS.
1. After the universal joint bearing assemblies are thoroughly clean, apply clean lubricant to the rollers.
2. Check each bearing for missing rollers.

NOTE: Remove the stale grease from the bearing cage. Lubricate grease containing molybdenum disulfide on the needle roller, seal lip and the both surface of thrust washer.

INSTALL THE SPIDER AND UNIVERSAL JOINT BEARINGS INTO THE YOKES.
1. Put the spider into the yoke and then set the universal joint bearings on the yoke.

NOTE: When assembling the universal joint spider to the sliding yoke, position the lubrication fitting so that it is to the yoke side as shown in figure.
2. Press the universal joint bearings into the yokes.

NOTE:
- Play attention not to damage the seal lip of the universal joint bearing when installation.
- Align the phasing arrow on the universal joint yoke and the phasing arrow on the sliding yoke.

CHECK THE STARTING TORQUE OF THE UNIVERSAL JOINT USING A SPRING BALANCER.

Assembly Standard: 15—50 kg-cm (13—43 lb.in)

1. If the torque is below 15 kg-cm (13 lb.in), replace the thrust washer to the thicker one.
2. If the torque is below 50 kg-cm (43 lb.in), replace the thrust washer to the thinner one.

<table>
<thead>
<tr>
<th>Color code (A)</th>
<th>Gray</th>
<th>Blue</th>
<th>Pink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness mm (in)</td>
<td>2.22 (0.0874)</td>
<td>2.30 (0.0905)</td>
<td>2.38 (0.0937)</td>
</tr>
</tbody>
</table>

ASSEMBLE THE SLIDING YOKE AND PROPELLER SHAFT SUB ASSEMBLY.

1. Remove the stale grease from the spline of the propeller shaft.
2. Install the new dust seal on the shaft by pushing it in the seal groove.
3. Apply the grease containing molybdenum disulfide on the spline and sliding area of the dust seal.
4. Align the phasing arrow on the shaft sub assembly and the phasing arrow on the sliding yoke.
5. After assembling the propeller shaft, check the phasing arrow as shown in the figure.
6. Adjust the direction of lubrication fitting for sliding yoke side and propeller shaft side as shown in figure.
IMPORTANT POINT – MOUNTING

CONNECT THE PROPELLER SHAFT TO THE FLANGE ON THE DIFFERENTIAL AND TRANSMISSION.

1. Align the match marks on the flange and yoke.
2. Tighten the bolts and nuts.
3. Lubricate the universal joints and sliding spline.

Grease: Refer to recommended lubricants list.
INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sliding spline</td>
<td>—</td>
<td>—</td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sliding spline backlash</td>
<td>0.062—0.174 (0.0025—0.0068)</td>
<td>0.25 (0.0096)</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>At spline</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At yoke lug 60 mm (2.36 in) from shaft center</td>
<td>0.155—0.435 (0.0061—0.0171)</td>
<td>0.63 (0.024)</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>Clearance (C) between universal joint spider and needle roller bearing (C = A — 2B — D)</td>
<td>0.024—0.064 (0.0010—0.0025)</td>
<td>0.1 (0.0039)</td>
<td>Replace</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER DC

DIFFERENTIAL CARRIER
(SS12-2 Series)

DATA AND SPECIFICATIONS DC-2
DESCRIPTION DC-2
TROUBLESHOOTING DC-5
SPECIAL TOOLS DC-6
OVERHAUL DC-7
DATA AND SPECIFICATIONS

1. Type ... Single-reduction single-speed by spiral bevel gearing
2. Gear ratios 4.100 4.857 6.142
3. Oil capacity 3.5 liters (0.92 U.S.gal/0.77 Imp.gal)

DESCRIPTION

5. Oil seal 11. Axle shaft 17. Axle housing
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal noise</td>
<td>• Worn or damaged pinion bearings</td>
<td>Replace bearings.</td>
</tr>
<tr>
<td></td>
<td>• Worn or damaged differential. side bearings</td>
<td>Replace bearings.</td>
</tr>
<tr>
<td></td>
<td>• Loose pinion bearings</td>
<td>Adjust bearing preload.</td>
</tr>
<tr>
<td></td>
<td>• Loose differential side bearings</td>
<td>Adjust bearing preload.</td>
</tr>
<tr>
<td>Bearings system</td>
<td>• Worn or damaged pinion bearings</td>
<td>Replace bearings.</td>
</tr>
<tr>
<td></td>
<td>• Worn or damaged differential. side bearings</td>
<td>Replace bearings.</td>
</tr>
<tr>
<td></td>
<td>• Loose pinion bearings</td>
<td>Adjust bearing preload.</td>
</tr>
<tr>
<td></td>
<td>• Loose differential side bearings</td>
<td>Adjust bearing preload.</td>
</tr>
<tr>
<td>Gear system</td>
<td>• Inadequate backlash on ring gear and pinion gear</td>
<td>Adjust backlash.</td>
</tr>
<tr>
<td></td>
<td>• Worn thrust washers</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Worn differential spider</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Worn damaged ring gear and pinion</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Worn or damaged differential side gears and pinions</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Loose ring gear tightening bolts</td>
<td>Tighten bolts.</td>
</tr>
<tr>
<td></td>
<td>• Inadequate tooth contact of ring gear and pinion</td>
<td>Replace or adjust tooth contact.</td>
</tr>
<tr>
<td></td>
<td>• Worn pinion spline</td>
<td>Replace.</td>
</tr>
<tr>
<td>Rear axle system</td>
<td>• Worn rear axle shaft spline</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Worn hub bearings</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Loose hub bearings</td>
<td>Adjust bearing preload.</td>
</tr>
<tr>
<td></td>
<td>• Loose differential case tightening bolts</td>
<td>Tighten bolts.</td>
</tr>
<tr>
<td>Oil system, etc.</td>
<td>• Insufficient oil</td>
<td>Add.</td>
</tr>
<tr>
<td></td>
<td>• Poor oil quality</td>
<td>Change.</td>
</tr>
<tr>
<td></td>
<td>• Abnormal noise of propeller shaft</td>
<td>Refer to CHAPTER FOR PROPELLER SHAFT.</td>
</tr>
</tbody>
</table>
Prior to start of differential carrier overhaul, it is necessary to have these special tools.

ADJUSTING TOOL

![ADJUSTING TOOL](image)

09665-1190

SOCKET WRENCH

![SOCKET WRENCH](image)

09839-3606
OVERHAUL

1. Differential carrier assembly
2. Air bleather
3. Oil filler plug
4. Gasket
5. Axle housing assembly
6. Oil drain plug
7. Lock nut
8. Flange yoke coupling
9. Oil seal
10. Taper roller bearing
11. Adjusting shim
12. Bearing cage
13. Adjusting shim
14. Bearing spacer
15. Spiral bevel gear
16. Cylindrical roller bearing
17. Retainer ring
18. Differential carrier case
19. Adjusting nut
20. Differential case assembly
21. Side gear thrust washer
22. Side gear
23. Pinion thrust washer
24. Pinion gear
25. Spider
26. Bearing cap
27. Lock plate

T = Tightening torque: kg-cm (lb.ft)
IMPORTANT POINT (S) — DISMOUNTING

DISCONNECT THE PROPELLER SHAFT.
NOTE: Apply an aligning mark A before disassembling.

DISMOUNT THE DIFFERENTIAL CARRIER ASSEMBLY.
1. Drain the gear oil and remove the axle shaft.
2. Using a jack, dismount the differential carrier assembly.

IMPORTANT POINT (S) — DISASSEMBLY

MOUNT THE DIFFERENTIAL CARRIER ASSEMBLY ON A WORK STAND.

DIFFERENTIAL CASE
1. Remove the bearing cap.
NOTE: Confirm the aligning mark on the cap and carrier case. If no mark is seen, apply an aligning mark before disassembling.

2. To remove the taper roller bearing. Using a puller.
3. Disassemble the differential case.
NOTE: Be sure to check the aligning marks on the differential case before disassembly.
PINION CASE
1. Unlock the staked parts of the lock nut and remove the nut.
Special Tool: Socket Wrench (09839-3606)
2. To remove the inner taper roller bearing and cylindrical roller bearing, use a puller.

IMPORTANT POINT (S) – ASSEMBLY

DIFFERENTIAL CASE
1. Measure the pinion backlash.
NOTE:
- Be sure to set the chamfering side of the thrust washer for the side gear face to the gear side.
- Gear meshing should be as D.
A: Pinion B: Side gear
C: Thrust washer D: Correct mesh
E: Incorrect mesh
2. If the backlash is more than service limit, replace the thrust washer for side gear and/or for pinion.
Assembly standard: 0.20 – 0.60 mm (0.0079 – 0.0236 in)
Service limit: 0.9 mm (0.364 in)
3. Assemble the differential case.
NOTE:
- Coincide these aligning marks when assembling.
- Apply the adhesive (THREE BOND 1360K or equivalent) on the bolt threads.
4. Install the ring gear to the differential case and tighten them with bolts.
NOTE: Apply the adhesive (THREE BOND 1360K or equivalent) on the bolt threads.
PINION BEARING PRELOAD ADJUSTMENT

1. Assemble pinion case and tighten the flange yoke coupling provisionally.

NOTE: The oil seal be set in the pinion after measurement of the preload.

Special Tool: Socket Wrench (09839-3606)

2. Using the torque wrench, measure the preload of the bearings and if the preload is out of specific value shown below, adjust by shims.

Assembly standard: Starting torque
- New bearing: 20 – 25 kg-cm (1.4 – 1.8 lb-ft)
- Re-used bearing: 15 – 20 kg-cm
 (1.1 – 1.4 lb-ft)

Adjusting shim thickness: 0.40 mm (0.0157 in)
- 0.45 mm (0.0177 in)
- 0.50 mm (0.0197 in)

3. After adjusting the preload install the new oil seal.

NOTE: Apply the wheel bearing grease for oil seal lip part.

4. Install the flange yoke coupling and tighten the lock nut.

Special Tool: Socket Wrench (09839-3606)

5. Measure the preload and record it for measuring the total preload at the differential carrier bearings later.

6. Caulk the lock nut.

NOTE: More than 1.5 mm (0.06 in)
- Caulked portion shall be fitted in the groove thoroughly.
- Caulking shall be done without rift.

ADJUSTMENT OF PINION FITTING HEIGHT (CONICAL DISTANCE)

1. Install the pinion case assembly and adjust the height “A” by the shims “E”.

Standard pinion height: 24.25 mm (0.954 in)

A: Pinion Height
B: Vernier calipers
C: Straight edge
D: Engraved value for gear toothing adjustment
E: Adjust shims
EXAMPLE: If the engraved value at the surface of the pinion gear is -2 (-2 means -0.2 mm),

\[
24.25 \text{ mm} - 0.2 \text{ mm} = 24.05 \text{ mm}
\]

- Measuring part A
- Standard pinion height

2. Install the bearing lock plate and caulk the lock nut as shown.

ADJUSTMENT OF SPIRAL BEVEL GEAR BACKLASH

1. Set the differential case assembly on the carrier case and install the adjusting nut and bearing cap.

NOTE: Coincide these aligning marks A.

2. Adjust the preload of the side bearing provisionally.
 1) Tightening the adjusting nut, fully then loosen the adjusting nut by $1/4 + 1$ notch.

 Special Tool: Adjuster Tool (09665-1190)
 2) Hit the bearing cap by copper hammer.

3. Measure the gear backlash for four points.

 Assembly Standard: $0.20 - 0.25$ mm ($0.0079 - 0.0098$ in)
4. Adjust the backlash by turning the adjusting nuts.
 Turn the both nuts by same angle.
 BACKLASH: A — Decrease B — Increase
Special Tool: Adjuster Tool (09665-1190)

INSPECTION AND ADJUSTMENT OF GEAR MESHING.
1. Satisfactory gear meshing.
 NOTE: There is remaining blade-applying mark at the lapping time
 of new part (spare part), thus make adjustment of the
 same blade-application as that of the remained mark.

2. Example of the unsatisfactory engagement.
 1) Toe and Flank contact.
 A: Toe contact — Replace
 B: Flank contact — Adjust

 2) Heel and face contact.
 A: Heel contact — Replace
 B: Face contact — Adjust.

MEASURE AND ADJUST OF DIFFERENTIAL CARRIER
BEARING AND SIDE BEARING.
1. Measure and adjust the total preload at the differential carrier
 bearings.
 NOTE: Total preload = pinion bearing preload (Refer to item 5 in
 page DC-08) + side bearing preload (Refer to the table
 below).
 1) Using a torque wrench.
DIFFERENTIAL CARRIER

Assembly standard: Starting torque

<table>
<thead>
<tr>
<th>Gear ratio</th>
<th>4.100</th>
<th>5.857</th>
<th>6.142</th>
</tr>
</thead>
<tbody>
<tr>
<td>New bearing</td>
<td>3.66 - 4.87 (0.265 - 0.352)</td>
<td>2.57 - 3.14 (0.186 - 0.246)</td>
<td>2.45 - 3.25 (0.177 - 0.235)</td>
</tr>
<tr>
<td>Re-Used bearing</td>
<td>2.44 - 3.65 (0.177 - 0.264)</td>
<td>1.71 - 2.56 (0.124 - 0.185)</td>
<td>1.63 - 2.44 (0.118 - 0.176)</td>
</tr>
</tbody>
</table>

NOTE: The gear ratio is indicated on the bearing cage.

2. Adjust the side bearing preload.
 PRELOAD: A – Decrease B – Increase
 Special Tool: Adjuster Tool (09665-1190)

3. Tighten the bearing cap and install the lock plate.

IMPORTANT POINT (S) – MOUNTING

MOUNTING
1. Apply a sealing compound on the face of housing flange.
 NOTE: ○ The trace of the sealing compound should not be discontinued.
 ○ Applying width should be approx. 3 mm, 5 mm away from the edge.
 A: Sealing Compound

2. Using a jack, install the differential carrier assembly to the axle housing.
 NOTE: Place the carrier assembly so that the ring gear teeth face toward the Right-hand side of vehicle.
3. Connect the propeller shaft.
 NOTE: Coincide these aligning marks A.
 Tightening torque:
 - φ12 bolt: 650 – 870 kg·cm (47 – 62 lb·ft)
 - φ14 bolt: 1,300 – 1,600 kg·cm (94 – 115 lb·ft)
 - φ16 bolt: 1,700 – 2,300 kg·cm (123 – 166 lb·ft)

4. Fill the axle housing with specified gear oil up to the filler plug hole.
 NOTE: Refer to recommended lubricants list.
INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pinion and Ring Gear</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
<tr>
<td>Wear and Damage</td>
<td></td>
<td></td>
<td></td>
<td>SM10-154</td>
</tr>
<tr>
<td>Bearing and Race</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
<tr>
<td>Burns or Pitting</td>
<td></td>
<td></td>
<td></td>
<td>SM11-064</td>
</tr>
<tr>
<td>Differential Case Spider Holes</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
<tr>
<td>Wear and Damage</td>
<td></td>
<td></td>
<td></td>
<td>SM11-063</td>
</tr>
<tr>
<td>Spider</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
<tr>
<td>Wear and Damage</td>
<td></td>
<td></td>
<td></td>
<td>SM10-137</td>
</tr>
<tr>
<td>Differential Side Gear and</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
<tr>
<td>Pinion Gear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wear or Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spider and Pinion Clearance</td>
<td>B–A:</td>
<td>0.145–0.19 mm</td>
<td>Replace</td>
<td>Measure</td>
</tr>
<tr>
<td></td>
<td>0.006–0.007 in</td>
<td>0.4 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.016 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrust Washers Thickness</td>
<td>For Side Gear</td>
<td>2.1–1.9</td>
<td>Replace</td>
<td>Measure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.083–0.075)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>For Pinion Gear</td>
<td>1.7–1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.067–0.059)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER RA

REAR AXLE

DATA AND SPECIFICATIONS RA-2
DESCRIPTION .. RA-2
TROUBLESHOOTING RA-3
SPECIAL TOOLS RA-4
OVERHAUL ... RA-5
DATA AND SPECIFICATIONS

1. Type ... Full-floating axle shaft.
2. Housing ... Banjo type, with extension tubes welded on both ends.
3. Type of drive Hotchkiss drive.

DESCRIPTION

1. Axle shaft
2. Wheel hub
3. Wheel nut outer
4. Wheel nut inner
5. Hub bolt
6. Brake drum
7. Hub bolt nut
8. Axle housing
9. Oil seal collar
10. Oil seal
11. Taper roller bearing
12. Lock washer
13. Lock nut
14. Lock plate
15. Differential carrier ass'y
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abnormal noise</td>
<td>Bearing system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Worn or damaged pinion bearings</td>
<td>Replace bearings.</td>
</tr>
<tr>
<td></td>
<td>• Worn or damaged differential side bearings</td>
<td>Replace bearings.</td>
</tr>
<tr>
<td></td>
<td>• Loose pinion bearings</td>
<td>Adjust bearing preload.</td>
</tr>
<tr>
<td></td>
<td>• Loose differential side bearings</td>
<td>Adjust bearing preload.</td>
</tr>
<tr>
<td></td>
<td>Gear system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Inadequate backlash on ring gear and pinion gear</td>
<td>Adjust backlash.</td>
</tr>
<tr>
<td></td>
<td>• Worn thrust washers</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Worn differential spider</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Worn damaged ring gear and pinion</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Worn or damaged differential side gears and pinions</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Loose ring gear tightening bolts</td>
<td>Tighten bolts.</td>
</tr>
<tr>
<td></td>
<td>• Inadequate tooth contact of ring gear and pinion</td>
<td>Replace or adjust tooth contact.</td>
</tr>
<tr>
<td></td>
<td>• Worn pinion spline</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>Rear axle system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Worn rear axle shaft spline</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Worn hub bearings</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Loose hub bearings</td>
<td>Adjust bearing preload.</td>
</tr>
<tr>
<td></td>
<td>• Loose differential case tightening bolts</td>
<td>Tighten bolts.</td>
</tr>
<tr>
<td></td>
<td>Oil system, etc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Insufficient oil</td>
<td>Add.</td>
</tr>
<tr>
<td></td>
<td>• Poor oil quality</td>
<td>Change</td>
</tr>
<tr>
<td></td>
<td>• Abnormal noise of propeller shaft</td>
<td>Refer to CHAPTER 9 PROPELLER SHAFT.</td>
</tr>
</tbody>
</table>

Prior to start of rear axle overhaul, it is necessary to have these special tools.

WHEEL HUB PULLER

![Wheel Hub Puller](image1)

09650-2110

HUB BEARING PULLER

![Hub Bearing Puller](image2)

09650-2120

SOCKET WRENCH

![Socket Wrench](image3)

09839-8203

HANDLE

![Handle](image4)

09849-2001
OVERHAUL

1. Differential carrier assembly
2. Air breather
3. Oil filter plug
4. Plug gasket
5. Rear axle housing assembly
6. Oil drain plug
7. Oil seal
8. Taper roller bearing (inner)
9. Hub bolt nut
10. Wheel hub
11. Hub bolt
12. Hub nut, inner
13. Hub nut, outer
14. Taper roller bearing (outer)
15. Lock washer
16. Lock nut
17. Lock plate
18. Axle shaft
19. Stud bolt
20. Taper collar

T = Tightening torque: kg-cm (lb.ft.)
IMPORTANT POINT(S) — DISASSEMBLY

REMOVAL OF AXLE-SHAFT.
1. Loosen the axle shaft lock nuts, strike the axle shaft end with a hammer to remove the taper collers, then pull out the axle shaft.

NOTE: When striking the axle shaft end, do not damage stud bolts.

REMOVAL OF WHEEL HUB BEARING LOCK NUT.
1. Remove the taper roller bearing lock nut using a special tool, and then remove the lock washer.

Special Tool: Hub nut wrench (09839-8203)

REMOVAL OF WHEEL HUB ASSEMBLY.
1. Using a special tool, remove the wheel hub with the outer taper roller bearing from the axle housing.

Special Tool: Wheel hub puller (09650-2110)
Handle (09849-2001)

NOTE: The wheel hub is heavy, therefore be careful to handle it.

REMOVAL OF INNER TAPER ROLLER BEARING AND COLLAR.
1. Using a special tool, remove the inner taper roller bearing with oil seal collar from the axle housing.

Special Tool: Hub bearing puller (09650-2120)
Handle (09849-2001)

REMOVAL OF WHEEL BRAKE ASSEMBLY
1. See chapter for SERVICE BRAKE.
IMPORTANT POINT (S) — ASSEMBLY

REPLACEMENT OF TAPER ROLLER BEARING RACE.
1. Remove the outer race of bearing by striking the race lightly and evenly through the 4 access holes in the wheel hub, using a tapping rod.
2. To install the outer race, use a tapping rod and a hummer or a press.

MOUNTING OF HUB BLOT.
NOTE: Stake the lock nuts at the two points after tightened to the specified torque.
A: Stake

GREASING
1. Pack enough wheel bearing grease between the bearing rollers.
2. Apply wheel bearing grease for the wheel hub 1 and lip part of the oil seal 2.
Hub grease capacity: 410 g (14.46 oz) per wheel

MOUNTING OF WHEEL BRAKE ASSEMBLY.
1. See chapter for SERVICE BRAKE.
INSTALLATION OF THE OIL SEAL COLLAR AND TAPER ROLLER BEARING.

1. If the collar is warmed up with hot water, it can easily be installed.
2. Using a tool as shown, makes the work easier.

INSTALLATION OF WHEEL HUB ASSEMBLY.

1. Install the wheel hub assembly and taper roller bearing (outer).
2. Using a tool as shown, makes the work easier.

NOTE: The wheel hub assembly is heavy, therefore be careful to handle it.

ADJUSTMENT OF WHEEL BEARING PRELOAD.

1. Tighten the nut using a special tool while turning the wheel hub.

 Special Tool: Hub Nut Wrench (09839-8203)
 Tightening Torque: 5,000 – 6,000 kg-cm (362 – 433 lb-ft.)

2. Loosen the lock nut by 1/4 to 1/3 turn.
 Then strike the wheel hub with a copper hammer.

 Special Tool: Hub Nut Wrench (09603-8203)

3. Measure the wheel bearing preload.
 Adjust the preload with the lock nut, if it exceeds or less than specification.

 Starting Torque: 40 – 60 kg-cm (2.9 – 4.3 lb.ft.)
 Standard Preload: 3.9 – 5.9 kg (8.6 – 13.0 lb)
INSTALLATION OF LOCK PLATE.

Install the lock plate to the lock nut.

NOTE:
- If the holes of the plate are not aligned with screw holes of the nut, turn over the plate.
- If alignment is still unattainable, loosen or tighten the lock nut within the specified wheel bearing preload.

BRAKE SYSTEM AIR BLEEDING AND BRAKE SHOE CLEARANCE ADJUSTMENT.

1. On completion of the wheel hub and related parts reassembly, conduct the followings.
 a. Bleed the air from the brake lines according to the section BRAKE SYSTEM AIR BLEEDING in the chapter SERVICE BRAKE.
 b. Adjust the brake shoe clearance according to the section WHEEL BRAKE ADJUSTMENT in the chapter SERVICE BRAKE.
INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Burns or Pitting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing Race</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Burns, Cracks and Brinelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hub Bolts</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Worn or Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil Seal Collar</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Wear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axle Shaft</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Wear or Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axle Tube</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Wear or Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA AND SPECIFICATIONS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Type</td>
<td>Reversed Elliot "I" beam</td>
</tr>
<tr>
<td>2. Axle beam material</td>
<td>Heat-treated carbon steel</td>
</tr>
<tr>
<td>3. Wheel alignment, Toe in</td>
<td>1 - 3 mm (0.04 - 0.118 in)</td>
</tr>
<tr>
<td>Camber</td>
<td>1°</td>
</tr>
<tr>
<td>King pin angle</td>
<td>7°</td>
</tr>
<tr>
<td>Caster</td>
<td>Without power steering 0°</td>
</tr>
<tr>
<td>With power steering 1°</td>
<td></td>
</tr>
<tr>
<td>4. Knuckle turning angle (Tire size)</td>
<td></td>
</tr>
<tr>
<td>Inner turn</td>
<td>(7.00-16) 50°</td>
</tr>
<tr>
<td>(7.50-16) 47°</td>
<td></td>
</tr>
<tr>
<td>(225-80R) 47°</td>
<td></td>
</tr>
<tr>
<td>Outer turn</td>
<td>36°30' 35° 35°</td>
</tr>
<tr>
<td>5. King pin thrust bearing</td>
<td>Ball bearing or taper roller bearing</td>
</tr>
<tr>
<td>6. Wheel bearings</td>
<td>Two tapered rollers</td>
</tr>
<tr>
<td>7. Amount of grease in a hub</td>
<td>350 g (12.3 oz) at one wheel</td>
</tr>
</tbody>
</table>
1. Axle beam
2. Knuckle arm
3. Stopper bolt
4. Grease cup
5. King pin
6. King pin bush
7. Thrust washer
8. Tie-rod
9. Tie-rod end
10. Ball stud
11. Thrust bearing
12. Knuckle
13. Wheel hub
1. Axle beam
2. Thrust washer
3. Lock pin
4. Lubricating fitting
5. Oil seal cover
6. King pin
7. Bushing
8. O-ring
9. Tie rod
10. Clamp
11. Tie rod arm
12. Tie rod end assembly
13. Oil seal guide
14. Oil seal
15. Tapered roller bearing
16. Wheel hub
17. Washer
18. Hub cap
19. Thrust bearing
20. Stopper bolt
21. Knuckle
22. Knuckle arm

T = Tightening torque: kg-cm (lb.ft.)

- T = 190–260 (14–18)
- T = 450–550 (33–39)
- T = 900–1,200 (65–86)
- T = 800–1,100 (58–79)
- T = 2,400–3,000 (174–216)
- T = 5,000–7,000 (362–506)
IMPORTANT POINT (S) — ASSEMBLY

1. Install the dust cover.
 NOTE: Fill in the sufficient grease into dust cover.
 Special Tool: 9209-14142, 09657-1420

2. Secure the axle to the leaf springs by means of “U” bolt.
 NOTE: Confirm the direction of caster shim. (With power steering)
 Caster shim A: With power steering.
 Non Caster Shim: Without power steering.

3. Adjust the clearance between thrust washer and knuckle.
 Adjust by thrust washer.
 Thickness of the thrust washer: 1.9, 2.0, 2.1, 2.2, 2.3, 2.4,
 2.5, 2.6 mm (0.0748, 0.0787, 0.0827, 0.0866, 0.0906,
 0.0945, 0.0984, 0.1024 in).
 Standard Clearance: Less than 0.1 mm (0.00393 in)
 Special Tool: 09657-1131, 09654-1080
 09712-1080, 9201-12100

4. Align the setting marks on the drum and wheel hub.

MEASURE THE WHEEL BEARING PRELOAD.

1. Tighten the nut while turning the wheel hub.
 Tightening torque: 1,100 – 1,300 kg-cm (80 – 93 lb-ft.)
2. Make 1/6 ~ 1/4 return-rotation for the nut, and tap the hub by a copper hammer.

3. Adjust the preload with the lock nut, if it exceeds specifications.
 Standard Preload: 1.8 - 4.4 kg (4.0 - 9.7 lb)

INSPECT THE FRONT WHEEL ALIGNMENT.
1. Park the vehicle on a level surface and check the tire pressure.

2. King pin inclination, Caster, and Camber.
 Kingpin Inclination: 7°
 AB, FB, RB
 Caster: 1°, 0° (Without power steering)
 1° (With power steering)
 Camber: 1°

3. Check the toe-in
 B - A: 1.0 - 3.0 mm (0.0394 - 0.118 in)
4. Adjust the wheel turning angle.
 Adjust by stopper bolts.

<table>
<thead>
<tr>
<th>Tire Size</th>
<th>7.00—16</th>
<th>7.50—16</th>
<th>225—80R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside</td>
<td>50°</td>
<td></td>
<td>47°</td>
</tr>
<tr>
<td>Outside</td>
<td>36°30'</td>
<td></td>
<td>35°</td>
</tr>
</tbody>
</table>

5. Turn the steering wheel to the full range of right and left, and confirm there is no contact of each linkage (especially between ball stud and ball stud socket).
INSPECTION AND REPAIR

Unit: mm (in)

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingpin Wear or Damage</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Use the magnetic flaw detector or color checking instrument.</td>
</tr>
<tr>
<td>Kingpin Diameter</td>
<td>35 (1.378)</td>
<td>34.85 (1.373)</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>Knuckle Wear or Damage</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Use the magnetic flaw detector or color checking instrument.</td>
</tr>
<tr>
<td>Kingpin Clearance</td>
<td>0.025–0.08</td>
<td></td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>(0.001–0.0031)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thrust Bearing Burns or Pitting</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td></td>
</tr>
<tr>
<td>Tir-rod Distortion</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td></td>
</tr>
</tbody>
</table>
INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing and Race Burn Pitting</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Oil Seal Collar Wear</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Dust Cover Wear</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER SR

STEERING

TROUBLESHOOTING .. SR-TS2A-1

STEERING LINKAGE .. SR-SL5A-1
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible causes</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard steering or poor return of steering wheel to center.</td>
<td>Bent steering shaft, sliding shaft or column.</td>
<td>Replace parts.</td>
</tr>
<tr>
<td></td>
<td>Universal joint oscillates or catches.</td>
<td>Replace universal joint in the assembly.</td>
</tr>
<tr>
<td></td>
<td>Column bearing does not revolve or catch.</td>
<td>Replace parts.</td>
</tr>
<tr>
<td></td>
<td>Lack of lubrication in steering linkage</td>
<td>Lubricate.</td>
</tr>
<tr>
<td></td>
<td>Wheel alignment is incorrect.</td>
<td>Refer to CHAPTER 11 “FRONT AXLE”.</td>
</tr>
<tr>
<td></td>
<td>Power steering system is faulty.</td>
<td>Refer to CHAPTER 67 “POWER STEERING”.</td>
</tr>
<tr>
<td></td>
<td>Tire air pressure is too low.</td>
<td>Adjust properly.</td>
</tr>
<tr>
<td>Steering wheel shimmies.</td>
<td>Steering system linkage is loose.</td>
<td>Tighten properly.</td>
</tr>
<tr>
<td></td>
<td>Too much wear or play in steering linkage (spline and ball joints).</td>
<td>Replace parts.</td>
</tr>
<tr>
<td></td>
<td>Other front axle problems.</td>
<td>Refer to CHAPTER 11 “FRONT AXLE”.</td>
</tr>
<tr>
<td></td>
<td>Power steering gear badly adjusted.</td>
<td>Refer to CHAPTER 67 “POWER STEERING”.</td>
</tr>
<tr>
<td></td>
<td>The tires out of balanced.</td>
<td>Balance tire.</td>
</tr>
<tr>
<td></td>
<td>Tire runout is off.</td>
<td>Correct runout.</td>
</tr>
<tr>
<td></td>
<td>Tire air pressure not uniform or sufficient</td>
<td>Adjust tire pressure.</td>
</tr>
<tr>
<td></td>
<td>Distorted disc wheel.</td>
<td>Replace parts.</td>
</tr>
<tr>
<td>Abnormal noises</td>
<td>Lack of lubrication in steering linkage</td>
<td>Lubricate.</td>
</tr>
<tr>
<td></td>
<td>Power steering system is faulty.</td>
<td>Refer to CHAPTER 67 “POWER STEERING”.</td>
</tr>
</tbody>
</table>
STEERING LINKAGE

DESCRIPTION

00455-1720

1. Steering wheel
2. Horn button assembly
3. Steering column cover
4. Column adjusting knob
5. Universal joint
6. Steering shaft dust cover
7. Sliding shaft
8. Steering gear unit
9. Pitman arm
10. Drag link

SPECIAL TOOL

Prior to starting a steering linkage overhaul, it is necessary to have these special tools.

STEERING WHEEL PULLER

GUIDE

NUT

09650-1340

09657-1420

920914-142
1. Steering wheel
2. Column cover upper
3. Column cover lower
4. Collar
5. Cushion
6. Cable protector
7. Combination switch
8. Retainer ring
9. Ball bearing
10. Column tube
11. Adjusting plate
12. Thrust washer
13. Spring
14. Column adjusting knob
15. Column bracket
16. Dust cover
17. Steering shaft
18. Column cover
19. Weatherstrip
20. Sliding shaft
21. Oil seal
22. Dust seal
23. Sliding yoke
24. Lubrication fitting
25. Pitman arm
26. Steering gear bracket
27. Drag link
28. Steering gear unit

A: 500–800 kg-cm (37–67 lb.ft)
B: 150–220 kg-cm (11–15 lb.ft)
C: 400–500 kg-cm (29–36 lb.ft)
D: 5–10 kg-cm (5–8 lb.in)
E: 600–800 kg-cm (37–43 lb.ft)
F: 1,100–1,500 kg-cm (80–108 lb.ft)
G: 2,200–3,000 (160–217 lb.ft)
H: 1,100–1,500 (80–108 lb.ft)
J: 800–1,100 (58–79 lb.ft)
IMPORTANT POINT – DISASSEMBLY

REMOVE THE STEERING WHEEL.
1. Remove the horn button by hand.
2. Using special tool, remove the steering wheel as shown in figure.

NOTE: Place the match marks on the steering wheel and steering shaft.
Special Tool: Steering wheel puller (09650-1340)

REMOVE THE STEERING SHAFT.
1. Remove the column adjusting knob and the both upper and lower column cover.
2. Remove the wiper and combination switch.

NOTE: At this time, disconnect the ground cable to cause a short which can result in personal injury and/or property damage.

3. Remove the pivot bolt and lock bolt then pull out the steering shaft.

NOTE: When pull out the steering shaft, be careful not to scratch on the nylon coating of sliding shaft.

IMPORTANT POINT – ASSEMBLY

ASSEMBLE THE STEERING SHAFT.
1. Measure the thrust play and adjust by retainer ring.

NOTE: Choose a retainer ring that will set the thrust play to the standard. Thrust play must be within 0.1 mm (0.0039 in) with 30 kg (66.1 lb) force in shaft direction.

Retainer rings are available in the following thickness. Unit: mm (in)

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Unit: mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.40</td>
<td>0.056</td>
</tr>
<tr>
<td>1.45</td>
<td>0.057</td>
</tr>
<tr>
<td>1.50</td>
<td>0.059</td>
</tr>
<tr>
<td>1.55</td>
<td>0.061</td>
</tr>
<tr>
<td>1.60</td>
<td>0.063</td>
</tr>
<tr>
<td>1.65</td>
<td>0.066</td>
</tr>
<tr>
<td>1.70</td>
<td>0.067</td>
</tr>
<tr>
<td>1.80</td>
<td>0.071</td>
</tr>
<tr>
<td>2.00</td>
<td>0.079</td>
</tr>
<tr>
<td>2.20</td>
<td>0.087</td>
</tr>
</tbody>
</table>

2. Lock the yoke and sliding shaft with clamp bolt and then stake the nut bolt as shown in figure.
INSTALL THE STEERING WHEEL.
1. Apply chassis grease to the contact plate on the lower side of the steering wheel.

2. Install the steering wheel on the steering shaft, making sure to align the match marks.

NOTE: Check that the steering wheel is in the correct position when the wheels point straight ahead. If the steering wheel is not positioned properly, the various meters will not be easily visible.

IF NECESSARY, REPLACE THE DRAG LINK DUST SEAL.
1. Observe the following order when changing the dust cover.
 a. Pry off the dust cover with a screwdriver.
 b. Put 6.5 g (0.23 oz) of lithium molybdenum grease in the cover.
 c. Using the special tool and install the dust cover onto the socket without damaging it.

 Special Tool: Guide (09657-1420)
 Nut (920914-142)

INSTALL THE DRAG LINK.
1. Connect the drag link with the pitman arm and with the knuckle arm.

 NOTE:
 • At this time, make sure that the arrow mark or numeral on the drag link is positioned toward the front of vehicle.
 • When handling the drag link, take care not to damage the dust cover.

2. Tighten the slotted nuts of the ball studs at both ends of the link to the specified torque and then secure the nuts with the cotter pins.
INSPECT THE STEERING SYSTEM FOR OPERATING ABILITY.

1. Place the front wheels on the turn tables.
2. To be revolved smoothly without any shocks or abnormal resistance when the steering wheel is turned full range.
3. Check the steering wheel freeplay.

NOTE: In case of the vehicle is equipped power steering, check the steering wheel freeplay while engine is running. (Idling)

Wheel Freeplay: 15—35 mm (0.6—1.37 in)

If wheel freeplay is exceed the 15—35 mm (0.6—1.37 in), turn the set screw clockwise to decrease wheel freeplay and counterclockwise to increase it.

WARNING
Excessive steering wheel freeplay may adversely affect vehicle handling. This can result in personal injury and/or property damage.

4. Measure the steering wheel turning force.
 Using a spring balancer, measure the steering wheel turning force.

NOTE: In case of the vehicle is equipped power steering, measure the steering wheel turning force while engine is running. (Idling)

Turning force

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>With power steering</td>
<td>2.0 kg (4.4 lb)</td>
</tr>
<tr>
<td>Without power steering</td>
<td>2.5 kg (5.5 lb)</td>
</tr>
</tbody>
</table>

5. In case of vehicle is equipped adjustable steering column, the steering wheel must lock securely in any position up, down, forward and backward.

WARNING
Before moving the vehicle, tighten the knob securely and try to move the steering wheel up and down, and forward and backward to make sure that it is locked securely. Never try to adjust the steering wheel position while the vehicle is moving. Any adjustment of the steering wheel while driving can cause the driver to lose control, and result in personal injury and/or property damage.

6. Check that the switches are operating properly.
 A : Starter switch
 B : Combination switch
 C : Horn switch
 D : Wiper switch
<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering wheel</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
<tr>
<td>Cracks, Distortion, Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering wheel serrations</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
<tr>
<td>Wear, Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering shaft</td>
<td></td>
<td></td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>Bend</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universal joint assembly</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
<tr>
<td>Oscillation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil seal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drag link, Cracks, Damage</td>
<td></td>
<td></td>
<td>Replace the whole drag link assembly or replace only dust cover</td>
<td>Visual check</td>
</tr>
<tr>
<td>Ball joint, Play</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust seal, Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column tube, Cracks, Bends</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Ball bearing, Play, Poor rotation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(K.P.)
CHAPTER PS
POWER STEERING

TROUBLESHOOTING PS-TS1A -1
POWER STEERING GEAR UNIT PS-GU3A -1
POWER STEERING PUMP PS-PM1B -1
OIL RESERVOIR PS-OR3A -1
AIR BLEEDING OF POWER STEERING SYSTEM .. PS-AB2A -1
HYDRAULIC TEST PS-HT1A -1
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluid leakage</td>
<td>Pump</td>
<td>Replace pump.</td>
</tr>
<tr>
<td></td>
<td>Gear box</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Oil seal, O-ring other than seal lock nut</td>
<td>Replace oil seal or O-ring. and drain plug</td>
</tr>
<tr>
<td></td>
<td>• Seal lock nut, drain plug</td>
<td>Repair lock nut or plug.</td>
</tr>
<tr>
<td></td>
<td>Line joints</td>
<td>Repair leaky parts.</td>
</tr>
<tr>
<td>To locate fluid leaks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>clean leaked fluid and check fluid level first.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard steering</td>
<td>One side is hard</td>
<td>Hydraulic test. Replace piston subassembly.</td>
</tr>
<tr>
<td>(Excessive steering effort)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basic inspection items</td>
<td>Both sides are hard</td>
<td>Hydraulic test. Measure pump discharge pressure. Replace pump. Measure system hydraulic pressure. Replace piston subassembly.</td>
</tr>
<tr>
<td>• Fluid level, Fluid cleanliness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Air in fluid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Tire pressure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Front alignment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Steering linkage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Universal joint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hard, when starting to steer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Incorrect preload of the sector shaft bearing.</td>
<td>Adjust sector shaft preload.</td>
<td></td>
</tr>
<tr>
<td>Abnormal noise</td>
<td>Pump</td>
<td>Repair and bleed air or replace pump.</td>
</tr>
<tr>
<td>Basic inspection items</td>
<td>Gear</td>
<td>Replace piston subassembly.</td>
</tr>
<tr>
<td>• Fluid level, fluid cleanliness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Air mixed in fluid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Pump piping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Steering linkage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
POWER STEERING GEAR UNIT

DATA AND SPECIFICATION

- Model: 8032
- Type: Integral type power steering
- Gear ratio: 19.79:1
- Cylinder inside diameter: 78 mm (3.07 in)

DESCRIPTION

Construction

44110-1400

1. Pitman arm
2. Dust cover
3. Valve pin
4. O-ring
5. Seal lock nut
6. Adjusting bolt
7. Backup ring
8. Needle roller bearing
9. Sector shaft
10. Worm shaft
11. Top cover
12. Power piston
13. Gear housing
14. End plug
15. Slipper seal
16. Oil seal
Operation
Neutral (no steering action)

State at right turn of worm shaft
(Left turn is reverse operating of right turn)

A: To reservoir
B: From oil pump

NOTE: Numbers with arrow mark indicate the operation order.
Prior to starting a power steering gear unit overhaul, it is necessary to have these special tools:

MEASURING ADAPTER
- 09659-1060

ADAPTER SETTING BOLT
- 9010-06200

OIL SEAL GUIDE
- 09657-1290

OVERHAUL

1. Power piston assembly
2. Dust cover
3. Retainer ring
4. Oil seal
5. O-ring
6. Slipper seal
7. Back up ring
8. Gear housing assembly
9. End plug assembly
10. Seal lock nut
11. Stud
12. Side cover assembly
13. Sector shaft assembly

Tightening Torque:

- $T = 350 - 500$ kg-cm (26 - 36 lb.ft)
- $T = 750 - 1,050$ kg-cm (55 - 75 lb.ft)
- $T = 2,200 - 3,000$ kg-cm (160 - 216 lb.ft)

Torque Values:

- $T = 800 - 1,200$ kg-cm (68 - 86 lb.ft)
- $T = 750 - 1,050$ kg-cm (55 - 75 lb.ft)

OBSERVE THE FOLLOWING INSTRUCTIONS BEFORE DISASSEMBLY AND ASSEMBLY.

1. The piston subassembly should never be disassembled.
2. All functional parts should be clean. Blow dirty parts off with dry compressed air, then clean them with volatile metal cleanser. Never use the brushes or clothes.
3. Handle rubber parts, seals, etc., in clean conditions. Any worn parts should be replaced immediately. Volatile metal cleanser may attack rubber parts, so they should never be used. Always use fluid.
4. For disassembling and assembling, only use the fluid specified.
5. Standard tools can generally be used for assembling and disassembling, through special tools may also be required. When using special tools, read the instruction carefully, and never use standard tools in place of special tools.

IMPORTANT POINT - DISASSEMBLY

REMOVE THE SIDE COVER WITH SECTOR SHAFT.

1. Position the sector shaft mark at right angle to the housing. Using a plastic hammer, drive out the head of the sector shaft.

2. Turn the adjusting bolt to the clockwise using a hexagonal wrench and pull the sector shaft out of the side cover.

NOTE: The side cover and needle roller bearing must not be disassembled.

REMOVE THE PISTON ASSEMBLY.

FOR RIGHT HAND DRIVE

1. Turn the worm shaft to the clockwise until it locks, then to the counterclockwise until the top cover raised.

FOR LEFT HAND DRIVE

1. Turn the worm shaft to the counterclockwise until it locks, then to the clockwise until the top cover raised.

NOTE: The top cover should not be raised more than 60 mm (2.36 in).

FOR RIGHT HAND DRIVE

2. Set a spacer between the top cover and the housing. Turn the worm shaft to the counterclockwise and pull out the piston to the top cover end face.

FOR LEFT HAND DRIVE

2. Set a spacer between the top cover and the housing. Turn the worm shaft to the counter clockwise and pull out the power piston to the top cover end face.

3. Pull out the piston subassembly by hand.

NOTE: Take special care not to pull the worm shaft out of the power piston.
REMOVE THE END PLUG ASSEMBLY.

Using a press, remove the end plug subassembly.

NOTE: Needle roller bearing must not be removed from the plug. Always replace them as a set.

IMPORTANT POINT – ASSEMBLY

INSTALL THE END PLUG ASSEMBLY.
1. Check the needle roller bearing for any damage.
2. If found a problem on the needle roller bearing, replace the plug subassembly.
3. Using a brass rod and hammer, install the plug subassembly into the housing.

INSTALL THE PISTON ASSEMBLY.
1. Check the power piston outer rim and rack for any damage.

NOTE: If any damage is found, replace the piston subassembly.
2. Check that the screws and lock nuts of centering bolts are tight enough and must not be turned by hand.

NOTE:
- Never adjust the centering bolt.
- If screws or centering bolts turn by hand, replace with the piston subassembly.

3. Install the slipper seal to the power piston and leave them a while for 5—7 minutes as shown in figure.

NOTE: Tighten the slipper seal with a piston ring holder or vinyl tape to fit it in the groove.

4. Attach the seal rings, back-up ring and O-ring to the power piston and top cover.

NOTE: Do not assemble as shown in the figure.
5. Place the piston assembly into the housing and tighten the bolts to specified torque.

NOTE: Be careful not to damage the slipper seal.

6. Check the oil seal for any damage.
 If necessary, replace it.
7. If replace the oil seal, tap in the oil seal into the top cover using the special tool.

 Special Tool: Guide (09657-1290)

ASSEMBLE THE SECTOR SHAFT AND SIDE COVER SUB-ASSEMBLY.

Turn the adjusting bolt to the counter clockwise using a hexagonal wrench, so that pull the sector shaft into the side cover.

INSTALL THE SECTOR SHAFT ASSEMBLY.

When install the sector shaft assembly, align the center of the power piston rack and the sector shaft center tooth.

NOTE: ○ Apply fluid on the sector shaft serrated part so that the housing oil sea will not be damaged.
 ○ Always use a new lock nut.

PRELOAD ADJUSTMENT.

1. Using special tool, measure the friction torque of the worm shaft when the piston is moved at both ends of cylinder.

 Special Tool: Measuring adapter (09659-1060)
 Friction Torque: Less than 15 kg-cm (13.1 lb.in)
2. Measure the maximum friction torque when the worm shaft is half-turned to the right and left from the center position of the power piston. Adjust the torque to 4–6 kg-cm (3.48–5.22 lb.in) higher than the torque obtained in 1 above, by turning the adjusting bolt.

3. Tighten the seal lock nut to the specified torque and check friction torque again.

NOTE: Use a hexagonal wrench to lock the adjusting bolt, when tighten the seal lock nut.

Inspection and Repair

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Wear or damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bearing damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side cover.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Bearing damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring screw.</td>
<td>No play and turn smoothly.</td>
<td>Replace, if necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staked for looseness.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sector shaft assembly.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Teeth for wear and damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serration for damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjust bolt treads for damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston subassembly.</td>
<td>No play and turn smoothly.</td>
<td>Replace as a set, if necessary.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worm shaft and power piston.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit: mm (in)
POWER STEERING PUMP

DATA AND SPECIFICATION

Type ... Vane type
Speed range 500—6,000 r.p.m.
Relief pressure 97—105 kg/cm²
Flow rate 9 liters/min.

DESCRIPTION

Construction

1. Drive shaft
2. Ball bearing
3. Front body
4. Plug
5. Spring
6. O-ring
7. Relief valve
8. Flow control valve assembly
9. Rear body
10. Vane
11. Rotor
12. Side plate
13. Knock pin
14. Needle roller bearing
15. Oil seal
16. Oil seal retainer
Operation

Neutral (Flow control valve and relief valve are not action)

1. Reservoir
2. Vane
3. Cam ring
4. Rotor
5. Flow control valve assembly
6. Relief valve
A: To booster
B: From booster

Relief valve operation

Flow control valve operation
SPECIAL TOOL

Prior to starting a power steering pump overhaul, it is necessary to have these special tool.

OIL SEAL PRESS

09434-1110

BEARING PRESS

09434-1130

BEARING PRESS

09434-1140

OVERHAUL

1. Retainer ring
2. Woodruff key
3. Pump shaft
4. Ball bearing
5. Snap ring
6. Oil seal retainer
7. Oil seal
8. Front body
9. Needle roller bearing
10. O-ring
11. Dowel
12. Cartridge assembly
13. Vane
14. Rotor
15. Cam ring
16. Side plate
17. Spring
18. Plug
19. Flow control valve
20. Rear body

T = Tightening torque: kg-cm (lb.ft)

T = 300–500 (22–36)

T = 500–800 (37–57)
IMPORTANT POINT – DISASSEMBLY

REMOVE THE DRIVE GEAR.

Using a commercial puller, remove the drive gear.

NOTE: Do not tighten vise too tight when clamp the pump in vise.

REMOVE THE PUMP SHAFT.

1. Using a snap ring pliers, remove the retainer ring.

WARNING
Retainer ring is spring steel and may pop out from the groove when removing. Wear safety glasses during removal.

2. Using a sliding hammer and adapter, remove the pump shaft with bearing.

REMOVE THE ROTOR, VANES, CAM RING AND SIDE PLATE.

1. Remove the front body, rotor and vanes.

NOTE: Be careful that the rotor and vanes do not fall out.

2. Using a plastic hammer, tap the rear body, and remove the cam ring, side plate and spring.

NOTE: Avoid gripping the side plate with pliers at this could mar it.

REMOVE THE FLOW CONTROL VALVE ASSEMBLY.

Remove the plug, spring and flow control valve assembly.

NOTE: Be careful not to drop, scratch or nick the flow control valve.
REPLACEMENT

REPLACE THE PUMP SHAFT BEARING, IF NECESSARY.
1. Using a snap ring pliers, remove the snap ring.
2. Using a press or special tool, press out bearing.
 Special Tool: Bearing press (09434-1140)
 Special Tool: Bearing press (09434-1130)
4. Install the snap ring.

REPLACE THE OIL SEAL, AND NEEDLE ROLLER BEARING, IF NECESSARY.
1. Using a screw driver, remove the oil seal.
 NOTE: Do not to scrape or damage the front body inside.
2. Remove the needle roller bearing.
4. Oil seal inserting direction.
 Insert the oil seal as shown in figure.
 NOTE: To prevent oil leakage from oil seal due to lip wear, apply lithium base grease to A and B.
5. Using special tool and press, press in the oil seal into the front body.
 Special Tool: Oil seal press (09434-1110)
IMPORTANT POINT — ASSEMBLY

NOTE:
○ Before assembling, clean all the parts and lubricate them with fluid.
○ When assembling the pump, should be replaced with new O-ring.

INSTALL THE FLOW CONTROL VALVE ASSEMBLY.

1. Apply fluid to the valve and check that it falls smoothly into the valve hole by its own weight.
If a problem is detected, replace the flow control valve assembly.

NOTE: There are three different valves in diameter, therefore the care should be taken that the mark on both valve and the pump body are always matched.

A—Valve: Number of lines
B—Body: Numerals

<table>
<thead>
<tr>
<th>Match mark</th>
<th>A</th>
<th>B</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

2. Install the flow control valve assembly and spring as shown in figure, and then tighten the plug.

Tightening Torque: 500—800 kg-cm (36—57 lb.ft)

INSTALL THE PUMP SHAFT INTO THE FRONT BODY.

1. Install the washer as shown in figure.
A — Washer
B — Oil seal
C — Front body

2. Using special tool or press, press in pump shaft with bearing into the front body.

Special Tool: Bearing press (09434-1140)
3. Using a snap ring pliers, install the retainer ring.

NOTE: When install the retainer ring, chamfer side face toward ball bearing as shown in figure.

WARNING
Retainer ring is spring steel and may pop out from the groove when installing. Wear safety glasses during installation.

INSTALL THE CAM RING, ROTOR AND VANE.
1. Install the dowel into the front body.
2. Install the cam ring with the dowel hole aligned with dowel.

NOTE: At this time, make sure that the dot mark in the side surface is positioned toward the rear body.

3. Install the rotor with the cut spline side facing towards the front body.

4. Install the vane with the round end facing outward.

INSTALL THE SIDE PLATE AND SPRING.
1. Place the side plate on the cam ring with dowel hole aligned with the dowel.
2. Place the spring on the side plate hole as shown in figure.

NOTE: Apply the lithium-base grease to A.
INSTALL THE REAR BODY.
1. Apply the lithium-base grease to the O-ring and install the O-ring into the rear body.
2. Using a press, press the rear body until contact the rear body and front body.
3. Tighten the bolts to specified torque.

INSPECT PUMP SHAFT ROTATION CONDITION.
Check that the pump shaft rotates smoothly without abnormal noise.

INSTALL THE GEAR TO THE PUMP SHAFT.
Tighten the lock nut to specified torque.
Tightening Torque: 700–800 kg.cm (51–57 lb.ft)

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil seal. Wear or damage.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Needle roller bearing. Scratched or damage.</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
<tr>
<td>Cam ring inner surface. Rotor surface. Venes. Wear, scratches or scoring.</td>
<td></td>
<td></td>
<td>Replace the cartridge assembly, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Side plate and front body. Abrasions or flows.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Inspection Item</td>
<td>Standard</td>
<td>Limit</td>
<td>Remedy</td>
<td>Inspection Procedure</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-------</td>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Flow control valve assembly.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Wear or damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pump shaft bearing.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Scratched or damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
OIL RESERVOIR

DESCRIPTION

44360-1910

1. Oil filter
2. Oil strainer
3. Spring
4. Cap with oil level gauge
5. Dust seal
6. Filter cover
7. Filter cover seal
8. Filter gasket

OVERHAUL

1. Cap sub assembly
2. Spacer
3. Dust seal
4. Oil strainer
5. Reservoir subassembly
IMPORTANT POINT — ASSEMBLY

NOTE:
- Using only compressed air to cleaning the filter.
- The filter is made of synthetic resin, so never wash it with hot water or solvent detergent.
- Before assembling, clean all the parts.

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level gauge</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dust seal</td>
<td></td>
<td></td>
<td>Clean or replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil strainer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clog or damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reservoir</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AIR BLEEDING OF POWER STEERING SYSTEM

1. FILL THE OIL RESERVOIR WITH POWER STEERING FLUID.
 NOTE:
 O Using only specified fluid.
 O Check that the fluid level is within COLD LEVEL of the level gauge.

2. Replace old fluid with new fluid after overhauling gear unit or pump.
 O Specified fluid . . . Refer to recommended lubricant list.

2. JACK UP THE FRONT AXLE AND SUPPORT THE FRAME WITH STAND.

3. TURN THE STEERING WHEEL FULLY BOTH DIRECTIONS SEVERAL TIMES.

4. CHECK THE FLUID LEVEL IN THE RESERVOIR.
 Check the fluid level and add fluid if necessary.
 NOTE: Check that the fluid level is within the COLD LEVEL of the level gauge.

5. START THE ENGINE AND TURN THE STEERING WHEEL FULLY BOTH DIRECTIONS SEVERAL TIMES WITH ENGINE IDLING.
 NOTE: The fluid in the reservoir should be continuously replenished while air bleeding so that the reservoir never become empty.

6. RETURN THE STEERING WHEEL TO AHEAD STRAIGHT.

7. RECHECK THE FLUID LEVEL WHEN ENGINE IS STOPPED.
 Check the fluid level and add fluid if necessary.
 NOTE: Check that the fluid level is within the HOT LEVEL of the level gauge. If the fluid is cold, check that it is within the COLD LEVEL of the level gauge.

If a problem is found, repeat steps 4 and 5. Repair the vane pump if the problem persists.
SPECIAL TOOL

Prior to starting a hydraulic test, it is necessary to have this special tool.

SYSTEM GAUGE

09470-1010

HYDRAULIC TEST

JACK UP THE FRONT AXLE AND SUPPORT THE FRAME WITH STANDS.

NOTE: Block the rear wheels.
SET THE SYSTEM GAUGE AS SHOWN IN FIGURE.

NOTE: After setting the system gauge, perform the bleeding air in the system according to “AIR BLEEDING OF POWER STEERING SYSTEM”.

CHECK THE FLOW CONTROL VALVE OPERATION.
1. Start the engine with idling then close the stop valve to set the fluid pressure at 50 kg/cm² (711 lb/sq.in).
2. Run the engine up to 1,500 rpm, then reduce the engine speed suddenly.
 NOTE: This operation should be repeated more than 5 times.
3. Good, if the set pressure 50±0.5 kg/cm² (711±7.11 lb/sq.in) is recovered immediately.
 If not recovered the setting pressure, replace the flow control valve assembly.
4. Open the stop valve fully.

CHECK THE RELIEF VALVE OPERATION.
1. Run the engine up to 2,000 rpm.
2. Close the stop valve to set the fluid pressure at 105 kg/cm² (1,493 lb/sq.in).
 NOTE: Be careful not to exceed 105 kg/cm² (1,493 lb/sq.in).
3. Good, if the fluid pressure is maintained at 97–105 kg/cm² (1,479–1,493 lb/sq.in).
4. If pressure is high, replace the flow control valve assembly.

MEASURE THE SYSTEM HYDRAULIC PRESSURE.
1. Make sure that the stop valve is fully open.
2. Start the engine with idling and then turn the steering wheel to a full stop.
3. Apply a force of approx. 15 kg (33 lb) to the steering wheel and measure the hydraulic pressure both directions.
 Hydraulic Pressure: 97–105 kg/cm² (1,379–1,493 lb/sq.in)
 If the above pressure is not attained, measure the discharge pressure or repair the steering gear unit.

MEASURE THE DISCHARGE PRESSURE.
1. Make sure that the stop valve is fully open.
2. Start the engine with idling and measure the discharge pressure with the stop valve fully close.
 Discharge Pressure: 97–105 kg/cm² (1,379–1,493 lb/sq.in)
 NOTE: Do not the stop valve to remain closed more than 15 seconds.
3. Open the stop valve fully.
REMOVE THE SYSTEM GAUGE.
1. Stop the engine and remove the system gauge.

NOTE: After removed system gauge, perform the bleeding air in according to “AIR BLEEDING OF POWER STEERING SYSTEM”.

INSPECT THE STEERING SYSTEM FOR OPERATION ABILITY.
1. Place the front wheels on turn tables then start the engine with idling.
2. Check that the steering wheel turned smoothly without any shocks or abnormal resistance, when it is turned fully both directions.
3. Measure the steering wheel turning face.
 Turning Face: Less than 2 kg (4.41 lb)
CHAPTER SB

SERVICE BRAKE
(VACUUM SERVO HYDRAULIC SYSTEM)

INTRODUCTION SB-IN21A -1
BRAKE PIPING DIAGRAM SB-PD13A-1
TROUBLESHOOTING SB-TS5A -1
VACUUM PUMP SB-VP3A -1
CHECK VALVE SB-CV2B -1
BRAKE FLUID RESERVOIR SB-FR3B -1
MASTER CYLINDER SB-MC3A -1
BRAKE PEDAL AND LINKAGE SB-BP5A -1
BRAKE VACUUM BOOSTER (MASTER VAC) SB-VB3A -1
WHEEL BRAKE SB-WB10A-1
WHEEL BRAKE ADJUSTMENT SB-WA4B -1
BRAKE SYSTEM AIR BLEEDING .. SB-BL4A -1
INTRODUCTION

DESCRIPTION

Type of service brake Vacuum servo hydraulic system with drum shoe type wheel brake.

Vacuum charging system Evacuation is from movable four blades rotary type vacuum pump through two check valves.

Vacuum pressure warning switch is used for indicating the vacuum level in the system.

Service brake control system Two independent lines for front and rear wheels with a master cylinder, brake vacuum booster.

A stop lamp switch is used to operate the stop lamps.

Wheel brake Drum brake with hydraulically actuated, internally expanding two-leading shoes in front wheels and dual two-leading shoes in rear wheels.

NOTE: See Section “BRAKE PIPING DIAGRAM” for the component parts (valves, switches, etc) used in the each system.
1. Brake fluid reservoir
2. Brake vacuum booster
 (MASTER VAC)
3. Master cylinder
4. Stop lamp switch
5. Brake pedal
6. Vacuum warning switch
 (Below 400mmHg—15.75 inHg)
7. Vacuum tank
8. Check valve
9. Front wheel brake
10. Magnetic valve
11. Vacuum pump
12. Exhaust brake cylinder
13. Idle up valve
14. Fuel cut valve
15. Rear wheel brake

NOTE: The pressure in the bracket means the switch operating pressure.
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
</table>
| No response upon working the pedal or there is the feeling of stepping on sponge. | - Air trapped in the brake lines
- Seal insufficient master cylinder piston cup.
- Vapor lock in brake system
- Leakage of fluid from brake system. | - Bleed air from brake system.
- Replace cup.
- Bleed air from brake system.
- Tighten further or replace gasket, O-ring, cup, etc. |
| Pedalling allowance is large (though there is response upon working the pedal). | - Excessive clearance between drum and lining.
- Excessive play of pedal. | - Adjust the clearance.
- Adjust the clearance between push rod and vacuum booster. |
| Brake fluid decreases. | - Leakage of fluid from brake system
- Leakage of brake fluid from cylinder. | - Tighten further or replace gasket, O-ring, etc.
- Replace cup. |
| Unequal or unstable braking. | - Lining is wet with oil
- Defective lining material (improper combination)
- Nonuniform lining contact
- Improper adjustment of brake shoe
- Nonuniform shoe clearance
- Excessively in abrasion loss of drums
- Deformation of drum
- Loose hub bearing
- Nonuniform pneumatic pressure of tire
- Clogging of brake system. | - Replace the lining.
- Replace the lining.
- Correct.
- Adjust.
- Adjust the clearance.
- Correct or replace.
- Correct or replace.
- Adjust or replace the bearing. (See Chapter RA and/or FA)
- Adjust to proper pneumatic pressure. (See Chapter WT)
- Replace. |
| Not enough braking, or too much pedal resistance. | Wheel brake and drum
- Lining is wet with oil.
- Contact failure of drum and lining.
- Improper lining material or hardening of lining.
- Deformation or hardening of drum. | - Replace the lining.
- Correct.
- Correct.
- Correct or replace. |

SERVICE BRAKE

SB-T55A-1

TROUBLESHOOTING
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake drags or does</td>
<td>• Excessive wear of lining</td>
<td>Replace.</td>
</tr>
<tr>
<td>not release.</td>
<td>Control system</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Leakage of brake fluid from brake system</td>
<td>Tighten further or replace gasket.</td>
</tr>
<tr>
<td></td>
<td>• Lack of brake fluid</td>
<td>Supply brake fluid periodically.</td>
</tr>
<tr>
<td></td>
<td>• Not enough vacuum, or too slow a rise of vacuum.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Check the pipe joints for tightness</td>
<td>Repair.</td>
</tr>
<tr>
<td></td>
<td>• Is there a rupture or twist in the pipe leading to the manifold?</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Is the hose ruptured or collapsed?</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>• Lack of vacuum pressure excessive use</td>
<td>Use properly.</td>
</tr>
<tr>
<td></td>
<td>• Suction of air</td>
<td>Correct.</td>
</tr>
<tr>
<td></td>
<td>• Improper operation of vacuum pump</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>• Clogging of brake system</td>
<td>Replace pipe, hose, etc.</td>
</tr>
<tr>
<td></td>
<td>Vacuum is available but does not hold up.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Check the pipe joints and hose joints</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>For vacuum booster</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Check the valve face and seat face in the atmosphere valve for damage or soiling.</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>• Check the valve face and seat face in the vacuum valve for damage or soiling.</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>• Check packing and diaphragm for damage.</td>
<td>Replace.</td>
</tr>
<tr>
<td>Brake drags or does</td>
<td>Improper adjustment of shoe clearance</td>
<td>Adjust the clearance.</td>
</tr>
<tr>
<td>not release.</td>
<td>Defective shoe retracting spring</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>No play in the pedal, and the return hole of master cylinder is blocked up.</td>
<td>Adjust the clearance between push rod and piston.</td>
</tr>
<tr>
<td></td>
<td>Improper return of master cylinder piston</td>
<td>Replace retracting spring or cup.</td>
</tr>
<tr>
<td></td>
<td>Defective check valve of master cylinder</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>Improper operation of vacuum booster</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>Clogging of brake system</td>
<td>Replace pipe, hose, etc.</td>
</tr>
<tr>
<td>Symptom</td>
<td>Possible cause</td>
<td>Remedy/Prevention</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Brake Squeal.</td>
<td>Improper lining material or surface hardening</td>
<td>Replace lining.</td>
</tr>
<tr>
<td></td>
<td>- Loose lining clamping rivet</td>
<td>Replace or tighten the rivet further.</td>
</tr>
<tr>
<td></td>
<td>- Clamping rivet in contact with drum</td>
<td>Replace lining and rivet.</td>
</tr>
<tr>
<td></td>
<td>- Deformation of wear of drum</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>- Intrusion of foreign matter between drum</td>
<td>Clean the surface of lining or replace.</td>
</tr>
<tr>
<td></td>
<td>- Loose wheel bearing</td>
<td>Adjust or replace bearing. (See Chapter RA and/or FA)</td>
</tr>
<tr>
<td></td>
<td>Vacuum booster loss of air tightness.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Check the valve face and seat face</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>in the poppet valve for damage or soiling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Check, packing and diaphragm for</td>
<td>Replace.</td>
</tr>
<tr>
<td></td>
<td>damage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Restriction of passage.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Check for clogged air filter, and for</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>twisted or clogged air lines.</td>
<td></td>
</tr>
<tr>
<td>Impossible to bleed air</td>
<td>Piston cup of master cylinder sucks in air</td>
<td>Replace the cup.</td>
</tr>
<tr>
<td>completely.</td>
<td>Oil hose between master cylinder and oil</td>
<td>Correct the bend of feed pipe and</td>
</tr>
<tr>
<td></td>
<td>reservoir bends and air is trapped.</td>
<td>let air out of the oil reservoir.</td>
</tr>
<tr>
<td></td>
<td>Improper tightness of joints of brake system</td>
<td>Tighten further or replace gasket.</td>
</tr>
<tr>
<td></td>
<td>Improper operation of master cylinder</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>check valve.</td>
<td></td>
</tr>
<tr>
<td>Oil leak air leak in vacuum</td>
<td>Lubricating bolt section.</td>
<td></td>
</tr>
<tr>
<td>pump.</td>
<td>Loose screw</td>
<td>Tighten it.</td>
</tr>
<tr>
<td></td>
<td>Fatigue of gasket</td>
<td>Replace it.</td>
</tr>
<tr>
<td></td>
<td>Front cover section</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loose bolt</td>
<td>Tighten it.</td>
</tr>
<tr>
<td></td>
<td>Fatigue of gasket</td>
<td>Replace it.</td>
</tr>
<tr>
<td></td>
<td>Delivery line section</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loose pipe</td>
<td>Tighten it.</td>
</tr>
<tr>
<td></td>
<td>Fatigue of gasket</td>
<td>Replace it.</td>
</tr>
<tr>
<td></td>
<td>Front oil seal section</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Damaged oil seal</td>
<td>Replace it.</td>
</tr>
<tr>
<td></td>
<td>Fatigue of oil seal</td>
<td>Replace it.</td>
</tr>
<tr>
<td></td>
<td>Suction section</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Loose bolt</td>
<td>Tighten it.</td>
</tr>
<tr>
<td></td>
<td>Fatigue of gasket</td>
<td>Replace it.</td>
</tr>
</tbody>
</table>
DATA AND SPECIFICATIONS

Type A rotor with movable four blades
Logical discharging volume 50 cm³/rev.
Allowable max. revolution 7,200 r.p.m. with oil pressure of 4.5 kg/cm² (63.99 lb/sp.in)

DESCRIPTION

1. Hollow screw
2. Casing
3. Blade
4. Rotor
5. Rotor shaft
6. Inner bearing
7. Vacuum pump housing
8. Outer bearing
9. Oil seal
10. End cover
11. Pulley
12. Woodruff key
13. Lock nut
14. O-ring
15. Check valve assembly
 A. Lubrication
 B. Suction (From vacuum tank)
 C. Discharging (Air, oil)

OVERHAUL

1. Lock nut
2. Pulley
3. End cover
4. Oil seal
5. O-ring
6. Bearing
7. Woodruff key
8. Rotor shaft
9. Vacuum pump housing
10. Gasket
11. Check valve assembly
12. Casing
13. Hollow screw
14. Rotor
15. Blades

T = Tightening torque: kg-cm (lb.ft)
IMPORTANT POINT (S) — ASSEMBLY

MEASURE THE WEAR OF THE SPLINE.

1. Remove the check valve assembly on the suction side. Check the play of the pulley side by holding the rotor with a screwdriver with a piece of rubber set at its end in order not to damage the rotor.

Service limit: 7.0 mm (0.276 in)

IMPORTANT POINT (S) — ASSEMBLY

REPLACING PARTS

1. On reassembling the vacuum pump, the O-ring and oil seal should be replaced with new ones.

BLADES AND ROTOR

1. Place the blades into grooves of the rotor, with their rounded end facing outward.
2. Apply adequate amount of engine oil for blades and rotor before installing the casing.

PERFORMANCE CHARACTERISTIC

Oil Pressure — 4.5 kg/cm² (63.99 Ib/sq.in)
Tank Capacity — 8.0 liters (1.76 Imp.gal/2.11 US gal)

The vacuum pump evacuate a 8 liters tank to 500 mmHg from 0 mmHg at 1,000 r.p.m., within 21 seconds.
Inspection and Repair

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner surface of the casing. Wear, damages (scorings, scratch, seizing, etc)</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Inner surface of end cover to contact with rotor and blades. Wear, damages</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Rotor shaft. Wear, damage (scoring, scratch, seizing, etc)</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>External surface of rotor. Wear, damage (scoring, scratch, seizing, etc)</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Bearing Burn, Pitting</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Blades Wear damages (scoring, scratch, seizing)</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Height of blades 17.5 mm (0.689 in)</td>
<td>16.5 mm (0.649 in)</td>
<td>Replace</td>
<td>Measure</td>
<td></td>
</tr>
</tbody>
</table>
INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function of check valve.</td>
<td>Air flow A to B and not flows B to A.</td>
<td></td>
<td>Replace, if air flows B to A.</td>
<td>Air blow</td>
</tr>
</tbody>
</table>

![Diagram of check valve]
DATA AND SPECIFICATIONS

Type: Spring type.
Valve opening pressure: 35 mm Hg.

DESCRIPTION

44730-1080

44730-1050

44730-1090

HMS K-5130

T = 150 (10.8)

HMS K-5170

T = Tightening Torque kg-cm (lb-ft)

1. Check valve assembly
 A. To vacuum pump
 B. From vacuum tank
 C. To spare line

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function of check valve.</td>
<td>Air flows B to A and not flows A to B.</td>
<td>Replace, if air flows A to B.</td>
<td>Air blow</td>
<td></td>
</tr>
</tbody>
</table>
BRAKE FLUID RESERVOIR

DATA AND SPECIFICATIONS
Type ... A combined type for both service brake and clutch control.
Low flowed level warning switch operating range. Below 30 mm (1.18 in)
Below 42 mm (1.65 in) stroke FB L.H.D.

DESCRIPTION
47220-2251

1. Float stopper
2. Reservoir body
3. Cap
4. Strainer
5. Float
6. Fluid level warning switch
7. Retainer ring

OVERHAUL
MH35—003—00X00X07
3590 3016X1—NO.22, 25

T = 50—60 (3.7—4.3)

T = Tightening torque: kg-cm (lb.ft)

1. Reservoir assembly
2. Spring nut
3. Clip
4. Cap
5. Strainer
A. For 2-independent lines brake
B. For single line brake
IMPORTANT POINT (S) — DISMOUNTING

REMOVE THE RESERVOIR.

NOTE:
- Before remove the reservoir, drain the brake fluid from the hydraulic line.
- Place a small drain pan under the reservoir to receive the fluid. Do not let brake fluid remain on a painted floor. Wash it off immediately.

INSPECTION AND REPAIR

NOTE: Brake fluid or Isopropyl alcohol only be used to wash the fluid reservoir.

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake fluid reservoir. Cracks, damages, leakage.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Operating of fluid level Warning switch</td>
<td>The warning lamp and buzzer should be turned on. When the float is submerged lower than MIN. level.</td>
<td></td>
<td>Replace, reservoir assembly, if necessary.</td>
<td></td>
</tr>
</tbody>
</table>
SERVICE BRAKE

MASTER CYLINDER

DATA AND SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Dual piston</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder bore</td>
<td>28.57 mm (1.13 in)</td>
</tr>
<tr>
<td>Max. piston stroke</td>
<td>35.0 mm (1.38 in)</td>
</tr>
</tbody>
</table>

DESCRIPTION

47200-1380A

1. Retainer ring
2. Piston cup
3. Piston
4. Joint pipe
5. Piston cup retainer
6. Conical spring
7. Cylinder
8. Check valve
9. Compression spring
10. End plug
A. From reservoir
B. From booster
C. To wheel cylinder

HMS K-5170
OVERHAUL
MH35-003-00X00
3616T 1—NO. 20

1. Master cylinder assembly
2. Brake vacuum booster
3. Retainer ring
4. Piston cup
5. Piston
6. Shim
7. Piston cup retainer
8. Conical spring
9. Joint pipe
10. Gasket
11. Set screw
12. Compression spring
13. Check valve
14. End plug

T = 90–130 (6.6–9)
T = 180–230 (14–16)
T = 150–200 (11–14)
T = 650–750 (47–54)
IMPORTANT POINT (S) – DISMOUNTING
REMOVAL OF MASTER CYLINDER.

NOTE:
○ Before removing the cylinder, drain the brake fluid from the hydraulic lines.
○ Place a small pan under the master cylinder to receive the brake fluid. Do not let fluid remain on a painted floor. Wash it off immediately.

IMPORTANT POINT (S) – DISASSEMBLY
WASHING (CLEANING) OF PARTS
To washing the respective parts, the brake fluid or isopropyl alcohol should only be used.

IMPORTANT POINT (S) – ASSEMBLY
WHEN ASSEMBLING THE MASTER CYLINDER ALL RUBBER PARTS SHOULD BE REPLACED WITH NEW ONES.

BEFORE INSTALLING THE JOINT PIPE, APPLY A SEAL TAPE FOR TAPERED THREADS EXCEPT FIRST ONE OR TWO THREADS.

ON ASSEMBLING, APPLY RUSTPROOF OIL TO THE INTERNAL SURFACE OF THE CYLINDER, THE OUTER CIRCUMFERENCE OF THE PISTON AND CUPS.

Rust proof oil (CCI No. 20): 04156-1010

INSTALLING OF SET SCREW.
Install the screw so that the mutual position of the piston and screw will be as shown.
<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner surface of cylinder. Corrosion, wear</td>
<td></td>
<td></td>
<td>Clean or replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Outer circumference of piston. Corrosion, wear.</td>
<td></td>
<td></td>
<td>Clean or replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Clearance between cylinder and piston.</td>
<td>0.03–0.13 mm (0.0012–0.005 in)</td>
<td>0.2 mm (0.0078 in)</td>
<td>Replace, cylinder and/or piston.</td>
<td>Measure</td>
</tr>
</tbody>
</table>
BRAKE PEDAL AND LINKAGE

DATA AND SPECIFICATIONS

Type: Pendulum type
Pedal height (From cab floor):
 Model RB, AB - 190 mm (7.48 in)
 Model FB - 183 mm (7.20 in)
Max. pedal stroke: 180 mm (7.08 in)

DESCRIPTION

00468-8980

1. Brake pedal
2. Pedal return spring
3. Link rod
4. Stop lamp switch
5. Pedal buffer
A. Pedal stroke
B. Pedal height
OVERHAUL
MH35—003—000X00
BC35—509—000X07
(3500) (1/2)

T = 650—870 (47—62)

1. Lock pin
2. Plain washer
3. Pin
4. Pedal bracket
5. Rod end
6. Link rod
7. Bushing
8. Brake pedal lever
9. Pedal shaft
10. Stop lamp switch
11. Brake vacuum booster
12. Tension spring
13. Pedal buffer
14. Pedal
15. Pedal pad

T = Tightening torque: kg-cm (lb-ft)

IMPORTANT POINT (S) — DISMOUNTING
BRAKE PEDAL AND LINKAGE, BRAKE VACUUM BOOSTER
SHOULD BE DISMOUNTED AS A SET WITH PEDAL BRACKET.
Prior to dismounting the set, remove the meter cruster, com-
bination meter, speed meter, air duct, master cylinder, etc.

IMPORTANT POINT (S) — ASSEMBLY
LENGTH OF THE LINK ROD.
Adjust the link rod length for specified length.
Assembly Standard: 164—166 mm (6.45—6.53 in)
IMPORTANT POINT (S) — ASSEMBLY

BUSHING

Apply adequate amount of chassis grease to the bushing.

STOP LAMP SWITCH.

Install the stop lamp switch to the bracket, so that the end of the switch threads parts and lock nut will be flush. (This will set the pedal height and correct function of the switch).

BRAKE PEDAL PLAY

Adjust the booster operating-rod clevis so that the play of the pedal is within standard play and tighten the lock nut.

Standard Cleanrace: 0.5 mm (0.020 in)

Standard Play: 5—10 mm (0.20—0.39 in)

IMPORTANT POINT (S) — MOUNTING

BRAKE PEDAL AND LINKAGE SHOULD BE MOUNTED AS A SET WITH PEDAL BRACKET AND BOOSTER.

MOUNTING IS A REVERSED SEQUENCE OF DISMOUNTING.

CHECK AFTER MOUNTING

BRAKE PEDAL HEIGHT

1. Check that the pedal buffer is flushed with stop lamp switch nut.
2. Check that the pedal height H from the floor is within the standard dimension.

Standard: Model AB and RB 186—196 mm (7.3—7.7 in)
Model FB 178—188 mm (7.0—7.4 in)
Service Brake Inspection and Repair

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 1, Rod 2, Lever 3. Wear.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Bushing 4. Wear.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Tension spring 5. Elastic strength distortion and any other damages.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Pedal buffer 6 and pedal pad 8. Wear and any other damages.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Brake pedal 7. Deformation (bend, twist)</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
</tbody>
</table>
BRAKE VACUUM BOOSTER (MASTER VAC)

DATA AND SPECIFICATIONS
Type .. Link rod control vacuum booster
Effective diameter of diaphragm 205 mm (8.07 in)

DESCRIPTION
44620-1411

BRAKE VACUUM BOOSTER (MASTER VAC)
1. Operating rod
2. Retainer
3. Silencer
4. Filter
5. Seal
6. Bearing
7. Key retainer
8. Key
9. Reaction disc
10. Push rod
11. Hub reaction disc
12. Lock nut
13. Spring
14. Support plate
15. Plate and seal
16. Boot
17. Poppet valve
18. Hub retainer
19. Plunger
20. O-ring
21. Valve body
22. Shell
23. Diaphragm
24. Diaphragm plate
25. Center body
26. Center plate
A. Brake pedal lever
B. Atmospheric pressure
C. To master cylinder
D. To vacuum tank
Prior to starting a vacuum booster overhaul, it is necessary to have these special tools.

DIAPHRAGM PLATE HOLDER

SEAL, BEARING, RETAINER, PRESS

SEAL, RETAINER, PRESS

SEAL, BEARING, RETAINER, PRESS

BRAKE BOOSTER INNER NUT SOCKET WRENCH

BRAKE BOOSTER AND PLATE HOLD NUT

PLATE (INSTALL TO REAR SHELL)

LEVER (USE WITH PLATE)

BOLT (FIX THE LEVER AND PLATE)

BRACKET (INSTALL TO FRONT SHELL)
OVERHAUL

3590-3636G
1—NO. 20

T = 200—250 (15—18)

T = Tightening torque: kg-cm (lb.ft)

1. Retainer
2. Dust seal
3. Front shell
4. Push rod
5. Reaction disc
6. Conical spring
7. Piston nut
8. Front push plate
9. Front diaphragm
10. Piston seal
11. Bearing
12. Distance plate
13. Reaction disc hub
14. O-ring
15. Piston spacer
16. Rear push plate
17. Rear diaphragm
18. Poppet valve body
19. Dust seal
20. Operating rod
21. Filter
22. Silencer
23. Key
24. Rear shell
25. Boot
26. Lock nut
27. Clevis
IMPORTANT POINT (S) – DISMOUNTING.
SEE SECTION FOR BRAKE PEDAL AND LINKAGE.

IMPORTANT POINT (S) – DISASSEMBLY
PREPARATION.
1. Install the bracket (special tool) to the front shell.
 Special Tool: Bracket (1340-0055)

2. Set the bracket with the booster assembly on a vise.
3. Apply a aligning marks for the front and rear shell.

FRONT SHELL AND REAR SHELL.
1. Apply vacuum pressure (Approx. 500 mmHg) for the brake vacuum booster.
2. Turn the rear shell counter clockwise until the notches of the rear shell align with its of the front shell.
 Special Tool: Plate (910-22092)
 Levers (910-22100)
 Bolts (1100-0630)
 Hold nut (1113-0191)

3. Release the vacuum pressure from the booster gradually so that the rear shell assembly will come out.
 NOTE: Be careful that the rear shell may jump out by tension of spring.
LOCK NUT
1. Set the plate (special tool) with the rear shell and center plate assembly on a vise.

 Special Tool: Plate (910-22092)
 Hold Nut (1113-0191)

2. Loosen the lock nut.

 Special Tool: Socket Wrench (910-22111)
 Plate holder.

KEY AND KEY RETAINER.
1. Push the key retainer hooks toward the center and remove the key retainer.

2. Set the key inserting port down, then push the operating rod so that the key will be dropped off and the valve (operating rod) can be removed.

REACTION DISC HUB.
 Turn the reaction disc hub for 90°, so that the reaction disc hub, center body, and valve body can be separated.

IMPORTANT POINT(S) – ASSEMBLY
 ALL RUBBER PARTS SUCH AS SEALS, O-RINGS, DIAPHRAGMS VALVE (OPERATING ROD) ETC. AND RETAINERS SHOULD BE REPLACED WITH NEW ONES. (Repair kit is available)

 ON ASSEMBLING, APPLY THE SILICON GREASE FOR FOLLOWING PARTS.
REAR SHELL.
Install the seal, bearing and retainer to the rear shell.
Special Tool: Press (910-21542)

CENTER PLATE.
Assemble the bearing and seal then install them to the center plate.
Special Tool: Press (910-21543)

FRONT SHELL.
Install the plate and seal to the front shell then the retainer.
Special Tool: Press (910-22450)
NOTE: Lip of the seal should be facing upward.

REACTION DISC HUB AND CENTER BODY.
Set the reaction disc hub and center body as shown, then place the diaphragm plate and diaphragm on the center body.

REACTION DISC HUB RETAINER.
Place the retainer into the valve body.
NOTE: Make sure that the notches in the valve body and its of the retainer are aligned.
VALVE BODY AND CENTER BODY.
Set the valve body on the center body.
NOTE: Notches of the retainer in the valve body and its of the reaction disc hub should be aligned.

RETAINING OF REACTION DISC HUB WITH VALVE BODY.
Turn the reaction disc hub for 90° with a screw driver and confirm that the reaction disc hub is securely hold by the retainer.

VALVE (OPERATING ROD)
Insert the valve (operating rod) into the valve body, and push the rod then insert the key and key retainer in position of the valve body.

REAR SHELL AND CENTER PLATE.
1. Set the plate (special tool) on a vise then install the rear shell assembly to the plate.
Special Tool: Plate (910-22092)
Hold Nut (1113-0191)
NOTE: Align the V notches of Rear shell and its of center plate.

LOCK NUT.
Tighten the lock nut.
Special Tool: Socket Wrench (910-22111)
Plate Holder ()
FINAL ASSEMBLY.
1. Install the bracket (special tool) to the front shell and set them on a vise.
Special Tool: Bracket (1340-0055)

2. Set the rear shell assembly on the front shell and spring to align the V notches of both shells (Aligning marks differ by 16°), then apply vacuum pressure (Approx. 500 mmHg) for front shell.
NOTE: Be careful so that your hands are not caught by the shells.

3. Turn the rear shell clockwise until the match marks are aligned.
Special Tool: Plate (910-22092)
Hold Nut (1113-0191)
Lever (910-22100)
Bolt (1100-0630)

PUSH ROD PROTRUSION
Apply vacuum pressure of 700 mmHg and measure the protrusion A. Adjust if necessary.
Assembly Standard: 10.375 – 10.625 mm (0.408 – 0.418 in)

IMPORTANT POINT (S) – MOUNTING
MOUNTING TO THE BRAKE PEDAL BRACKET AND PEDAL LINKAGE.
1. Set the brake pedal so that the buffer on the pedal will be flushed with stop lamp switch nut.

2. Adjust the operating rod clevis to align the holes of the clevis and of the brake pedal lever.
Then connect the clevis and lever with pin.
SERVICE BRAKE

BRAKE BOOSTER SHOULD BE MOUNTED AS A SET WITH PEDAL BRACKET, BRAKE PEDAL AND LINKAGE.

MOUNTING IS A REVERSED SEQUENCE OF DISMOUNTING.

CHECK AFTER MOUNTING.

BRAKE PEDAL HEIGHT AND PEDAL PLAY.

See section for brake pedal and linkage.

CHECKING OF THE VACUUM BOOSTER FUNCTION.

CHECK THE FUNCTION OF THE VACUUM BOOSTER

1. Pump the brake pedal until the vacuum tank pressure becomes zero (Vacuum warning lamp lights up).

2. Press the brake pedal and keep it depressed then run the engine. If the pedal moves down, the booster is operating normally.

POPPET VALVE FUNCTION.

1. Keep the engine in idling and place a thread at air inlet.

2. If the thread is drawn in, the poppet valve is defective.

A: Normal
B: Defect
3. Press the brake pedal repeatedly. If the thread is drawn in by each stroke, the poppet valve is operating normally.

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>All component Parts. Deformation, wear, scratches, scoring and/or any other damages.</td>
<td></td>
<td></td>
<td>Repair or Replace, if necessary.</td>
<td>Visual check.</td>
</tr>
</tbody>
</table>
WHEEL BRAKE

DATA AND SPECIFICATIONS

<table>
<thead>
<tr>
<th>Description</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Drum brake with hydraulically actuated, internally expanding two-leading shoes in front wheels and dual two-leading shoes in rear wheels</td>
</tr>
<tr>
<td>Brake drum inside diameter</td>
<td>320.0 mm (12.59 in) for both front and rear.</td>
</tr>
<tr>
<td>Brake lining:</td>
<td>Width x Length x Thickness</td>
</tr>
<tr>
<td>Front:</td>
<td>75 x 321.1 x 8 mm (2.95 x 12.64 x 0.315 in)</td>
</tr>
<tr>
<td>Rear</td>
<td>75 x 321.1 x 8 mm (2.95 x 12.64 x 0.315 in)</td>
</tr>
<tr>
<td>Wheel cylinder bore diameter, Front</td>
<td>26.99 mm (1.0625 in)</td>
</tr>
<tr>
<td>Rear</td>
<td>26.99 mm (1.0625 in)</td>
</tr>
</tbody>
</table>

DESCRIPTION

47020-1591

FRONT

1. Brake shoe
2. Brake lining
3. Backing plate
4. Shoe adjusting screw
5. Hole plug
6. Hold down pin
7. Shoe retracting spring
8. Adjuster lock spring
9. Wheel cylinder assembly
10. Boots
11. Piston
12. Piston cup
13. Cylinder
14. Air bleeder screw
15. Bleeder cap
A. Forward turning
REAR
1. Brake shoe
2. Brake lining
3. Backing plate
4. Shoe adjusting screw
5. Hole plug
6. Hold down pin
7. Shoe retracting spring
8. Adjuster lock spring
9. Wheel cylinder assembly
10. Boots
11. Piston
12. Piston cup
13. Cylinder
14. Air Bleeder screw
15. Bleeder cap
A. Forward turning
OVERHAUL
MF12-150-O0X00
(6610)

T = 600-880 (44-63)
T = 345-510 (25-36)

T = 130-180 (10-13)
T = 900-1,200 (66-86)
T = 200-290 (15-20)

T = Tightening torque: kg-cm (lb.ft)

FRONT
1. Grommet
2. Oil pipe joint
3. Oil pipe
4. Hole plug
5. Shoe hold down pin
6. Backing plate
7. Wheel cylinder assembly
8. Adjuster lock spring
9. Shoe adjust bolt
10. Piston
11. Boot
12. Piston cup
13. Cylinder
14. Air bleeder screw
15. Cap
16. Shoe retracting spring
17. Rivet
18. Brake lining
19. Brake shoe
20. Shoe hold down spring seat
21. Shoe hold down spring
22. Brake drum
MR12-150-00X02 (96110)

1. Grommet
2. Oil pipe
3. Shoe hold down pin
4. Hole plug
5. Backing plate
6. Wheel cylinder assembly
7. Adjuster lock spring
8. Shoe adjust bolt
9. Piston
10. Boot
11. Piston cup
12. Air bleeder screw
13. Bleeder cap
14. Tension spring
15. Rivet
16. Brake lining
17. Brake shoe
18. Shoe hold down spring seat
19. Shoe hold down spring
20. Brake drum

T = 130-180 (10-13)

T = 900-1200 (66-86)

T = 345-510 (25-36)

T = 70-120 (5.1-8.6)

T = Tightening torque: kg-cm (lb.ft)
IMPORTANT POINT (S) — DISASSEMBLY

REMOVAL OF TIRE.
Refer to chapter for WHEEL AND TIRE.

REMOVAL OF BRAKE DRUM WITH WHEEL HUB AND WHEEL HUB BEARINGS.
Refer to chapter for FRONT AXLE and for REAR AXLE.

REMOVING OF BRAKE SHOE AND RETRACTING SPRING.
1. Push in the shoe hold down spring seat and turn the shoe hold down pin 90° to remove the pin, spring, and spring seats.

2. Using a screw driver, dislocate the upper brake shoe web from the wheel cylinder anchor side, then remove the shoe and brake shoe retracting springs.

3. Remove the lower shoe hold down pin, spring, spring seats, and then lower brake shoe. See procedure 1 above.

IMPORTANT POINT (S) — ASSEMBLY

REMOVING OF BRAKE LINING FROM BRAKE SHOE.
1. Drill the rivet caulking section with a drill smaller than the rivet diameter.

NOTE: At this time, be careful not to scratch the brake shoe.

2. After drilling, remove the remaining rivet with a fine chisel or a riveting machine.

RE-LINING OF BRAKE SHOE.
1. Set the lining with shoe and insert the rivets into all holes, then hold them with an adhesive tape A.
3. Install the upper brake shoe and brake shoe retracting spring.
 a. Hook the retracting springs on the brake shoes and fit the shoe web end to the shoe adjusting bolt.
 b. Using a screw driver, fit the other end shoe web to the wheel cylinder piston groove.
4. Install the upper shoe hold down pin, spring, and spring seats.
 See procedure 2 above.

BRAKE DRUM AND WHEEL HUB.

1. When assembling the front brake drum and wheel hub, make sure that their aligning marks are oriented as closely to each other as possible.
 (FRONT WHEEL)

 NOTE: Position of marks are shown in Fig. (Broken line shows alternative position).

2. Caulk the hub bolts and nuts as shown in Fig., after tightening the brake drum and wheel hub.

 Tightening torque: 2,400—3,000 kg-cm (174—216 lb-ft)

MOUNTING OF WHEEL HUB WITH BRAKE DRUM.

 Refer to chapter for FRONT AXLE and for REAR AXLE.

MOUNTING OF TIRE.

 Refer to chapter for WHEEL AND TIRE.

ADJUSTMENT.

 Finally adjust the clearance between the brake lining and the brake drum explained in Section “WHEEL BRAKE ADJUSTMENT”.

Inspection and Repair

NOTE: Brake fluid or Isopropyl alcohol should only be used to wash the wheel cylinder components.

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake drum inner surface. Crack, scoring and/or any other damage.</td>
<td></td>
<td></td>
<td>Re-grind or replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Brake drum inner diameter.</td>
<td>320.0 mm (12.60 in)</td>
<td>322.0 mm (12.67 in)</td>
<td>Replace</td>
<td>Visual check</td>
</tr>
<tr>
<td>Brake drum runout.</td>
<td>0 — 0.1 mm (0 — 0.039 in)</td>
<td>0.2 mm (0.078 in)</td>
<td>Re-grind or replace.</td>
<td>Measure</td>
</tr>
<tr>
<td>Brake shoe with lining. Crack, wear deformation and/or any other damages.</td>
<td></td>
<td></td>
<td>Re-lining or Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Remaining thickness of brake lining.</td>
<td>8.0 mm (0.315 in)</td>
<td>4.0 mm (0.167 in)</td>
<td>Replace</td>
<td>Measure</td>
</tr>
<tr>
<td>Brake shoe retracting spring. Elastic strength distortion and/or any damage.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Wheel cylinder and piston. Corrosion and/or any damage.</td>
<td></td>
<td></td>
<td>Clean or replace, if necessary.</td>
<td>Visual check</td>
</tr>
</tbody>
</table>
NOTE: Brake fluid or isopropyl alcohol should only be used to wash the wheel cylinder components.

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearance between piston and wheel cylinder.</td>
<td>0.03 — 0.13 mm (0.00118—0.0051 in)</td>
<td>0.25 mm (0.0098 in)</td>
<td>Replace</td>
<td>Measure</td>
</tr>
<tr>
<td>Backing plate. Deformation, damage and any other abnormality.</td>
<td></td>
<td></td>
<td>Replace, if necessary</td>
<td>Visual check</td>
</tr>
</tbody>
</table>
Prior to starting a wheel brake adjustment, it is necessary to have the special tool.

WHEEL BRAKE ADJUSTMENT

REMAINING THICKNESS OF THE BRAKE LINING.
Check remaining thickness of lining through the inspection hole of the backing plate. If the lining has been worn to the limit marking or if it is foreseen that the lining will be worn to the limit by the time of next inspection, replace the lining.

CLEARANCE BETWEEN BRAKE LINING AND BRAKE DRUM.
1. Lift the wheel off the ground.
2. Turn the brake drum in the forward direction and stabilize the brake shoe by stepping on the brake pedal.

NOTE: If the spring brake is equipped, set the spring brake control valve for OFF position.
3. Turn the adjusting screw with an adjusting tool in the arrow direction, (The arrows are marked near the hole on the backing plate), to expand the shoe until the drum rubs with shoe and hardly be rotated by hand.

Special Tool: Brake Shoe Adjusting Tool (09665-1130)

4. Return the adjusting screw in the reverse arrow direction.
 Front 5–7 notches
 Rear 5–7 notches

Special Tool: Brake Shoe Adjusting Tool (09665-1130)

5. Turn the brake drum by hand in the forward direction, then step on the brake pedal and stabilize the shoe.

6. See to it that there is no dragging, by turning the drum by hand. If there was any dragging, repeat the operation over again from 3.

NOTE: In the same procedure above, adjust the clearance for all wheels.
BRAKE SYSTEM AIR BLEEDING

BRAKE FLUID RESERVOIR

Fill the brake fluid reservoir with brake fluid up to MAX. level.

NOTE: The brake fluid in the reservoir should be continuously replenished all during air bleeding so that the reservoir never becomes empty.

WHEEL CYLINDER

1. Connect a clear vinyl hose to the air bleeder.
2. Step on the pedal 4 or 5 times, and loosen the air bleeder of the wheel cylinder while stepping down on the pedal, then tighten it before bringing the pedal back to original position.

3. Repeat above 2 until no more bubbles comes up in the overflowing brake fluid.

NOTE: in the same procedure above, bleed the air from the all wheel cylinders.

BRAKE FLUID RESERVOIR

Finally fill the brake fluid reservoir with brake fluid up to MAX. level.
DATA AND SPECIFICATIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Internally expanding, duo-servo type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum inside diameter</td>
<td>203.2 mm (8.0 in)</td>
</tr>
<tr>
<td>Lining material</td>
<td>Resin mold</td>
</tr>
<tr>
<td>Lining dimensions</td>
<td>45 mm (1.772 in) wide, 5 mm (0.197 in) thick, 195 mm (7.677 in) length.</td>
</tr>
<tr>
<td>Standard lever stroke</td>
<td>3 — 5 teeth of ratchet</td>
</tr>
</tbody>
</table>
DESCRIPTION

PARKING BRAKE

<table>
<thead>
<tr>
<th>Number</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Anchor pin</td>
</tr>
<tr>
<td>2</td>
<td>Brake drum</td>
</tr>
<tr>
<td>3</td>
<td>Backing plate</td>
</tr>
<tr>
<td>4</td>
<td>Extension direction of shoe</td>
</tr>
<tr>
<td>5</td>
<td>Grommet</td>
</tr>
<tr>
<td>6</td>
<td>Brake shoe</td>
</tr>
<tr>
<td>7</td>
<td>Tension spring</td>
</tr>
<tr>
<td>8</td>
<td>Brake lining</td>
</tr>
<tr>
<td>9</td>
<td>Anchor pin</td>
</tr>
<tr>
<td>10</td>
<td>Parking lever</td>
</tr>
<tr>
<td>11</td>
<td>Tension spring</td>
</tr>
<tr>
<td>12</td>
<td>Shoe adjuster</td>
</tr>
<tr>
<td>13</td>
<td>Parking cable</td>
</tr>
<tr>
<td>14</td>
<td>Return spring</td>
</tr>
<tr>
<td>15</td>
<td>Stopper washer</td>
</tr>
<tr>
<td>16</td>
<td>Parking cable</td>
</tr>
</tbody>
</table>

PARKING BRAKE LEVER

<table>
<thead>
<tr>
<th>Number</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Release rod knob</td>
</tr>
<tr>
<td>2</td>
<td>Compression spring</td>
</tr>
<tr>
<td>3</td>
<td>Parking brake lever</td>
</tr>
<tr>
<td>4</td>
<td>Pawl release rod</td>
</tr>
<tr>
<td>5</td>
<td>Brake lever bracket</td>
</tr>
<tr>
<td>6</td>
<td>Parking brake switch</td>
</tr>
<tr>
<td>7</td>
<td>Pawl</td>
</tr>
<tr>
<td>Symptom</td>
<td>Possible cause</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Too much play noted on parking brake lever</td>
<td>Excessively large drum-to-lining clearance.</td>
</tr>
<tr>
<td></td>
<td>Maladjusted control linkage</td>
</tr>
<tr>
<td>Not enough braking force</td>
<td>Excessively large drum-to-lining clearance</td>
</tr>
<tr>
<td></td>
<td>Maladjusted control linkage</td>
</tr>
<tr>
<td></td>
<td>Burnt lining</td>
</tr>
<tr>
<td></td>
<td>Worn lining</td>
</tr>
<tr>
<td></td>
<td>Shoe are too dirty with water, dust, etc.</td>
</tr>
<tr>
<td></td>
<td>Linings are soaked with oil</td>
</tr>
<tr>
<td>Linings get burnt easily</td>
<td>Not enough drum-to-lining clearance</td>
</tr>
<tr>
<td></td>
<td>Shoe or drum is distorted</td>
</tr>
<tr>
<td></td>
<td>Spring are broken</td>
</tr>
<tr>
<td>Can not keep the lever in full stroke position</td>
<td>Over stroke of lever</td>
</tr>
<tr>
<td></td>
<td>Wear or broken of ratchet</td>
</tr>
<tr>
<td>Not return the lever to running</td>
<td>Water inside the cable</td>
</tr>
<tr>
<td>(below zero)</td>
<td></td>
</tr>
</tbody>
</table>
Prior to starting a parking brake overhaul, it is necessary to have these special tools.

RETURN SPRING REMOVER

RETURN SPRING HOOK

BRAKE SHOE ADJUSTING TOOL

09606-1050

09653-1110

09665-1130
PARKING BRAKE

1. Brake lining
2. Brake shoe
3. Flange yoke
4. Brake drum
5. Grommet
6. Backing plate
7. Tension spring
8. Tension spring
9. Shoe adjuster
10. Strut
11. Parking cable
12. Pin
13. Retainer ring
14. Shoe lever
15. Shoe hold-down pin
16. Shoe hold-down spring

T = 530–700 (38–50) kg•cm (Ib•ft)

PARKING BRAKE LEVER AND CONTROL

1. Parking brake lever ass'y
2. Rod
3. Parking brake cable
4. Release rod knob
5. Compression spring
6. Parking brake lever
7. Brake lever bracket
8. Parking brake switch
9. Pawl release rod
10. Pawl

T = 250–380 (18–27) kg•cm (Ib•ft)
IMPORTANT POINT – DISASSEMBLY

REMOVE THE RETURN SPRING.
Special Tool: Return Spring Remove (09606-1050)

IMPORTANT POINT (S) – ASSEMBLY

APPLY THE HEAT RESISTANCE GREASE FOR G.

INSTALL THE RETURN SPRING.
Special Tool: Return Spring Hook (09653-1110)

ADJUSTMENT

CLEARANCE BETWEEN DRUM AND LINING.
1. Turn the adjusting nut to reduce the clearance to zero.
 Special Tool: Brake Shoe Adjusting Tool (09665-1130)

2. Turn it back 8 – 10 notches.
 Standard: 0.3 – 0.35 mm (0.0118 – 0.0137 in)
 Service Limit: 0.5 mm (0.0197 in)
CONTROL CABLE
1. Pull the parking brake lever fully two to three times and release the lever.

2. Adjust the rod so that the parking brake stroke will be three to five notches, when the parking brake lever is pulled by 30 kg.

3. See to it that there is no dragging, by turning the drum by hand. If there was any dragging repeat the operation over again from 1.
<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Shoe Distortion, Cracks</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>VISUAL CHECK</td>
</tr>
<tr>
<td>Brake Lining Lining Thickness</td>
<td>5.0 (0.197)</td>
<td>1.0 (0.039)</td>
<td>Replace.</td>
<td>SM14-063</td>
</tr>
<tr>
<td>Return Spring Elastic Strength Distortion, Any Other Damage</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>VISUAL CHECK</td>
</tr>
<tr>
<td>Adjusting Screw and Strut Cracks, Abnormal Wear</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>VISUAL CHECK</td>
</tr>
<tr>
<td>Brake Drum Inside Diameter</td>
<td>203.2 (8.0)</td>
<td>204.2 (8.039)</td>
<td>Replace.</td>
<td>SM14-075</td>
</tr>
<tr>
<td>Brake Drum Run Out</td>
<td>0–0.1 (0–0.0039)</td>
<td>0.2 (0.0078)</td>
<td>Replace.</td>
<td>SM14-067</td>
</tr>
</tbody>
</table>
PARKING BRAKE

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ratchet of Parking Brake Lever</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>VISUAL CHECK</td>
</tr>
<tr>
<td>Abnormal Wear, Any Other Damage</td>
<td></td>
<td></td>
<td></td>
<td>SM14-073</td>
</tr>
<tr>
<td>Control Cable</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>VISUAL CHECK</td>
</tr>
<tr>
<td>Rusting, Any Other Damage</td>
<td></td>
<td></td>
<td></td>
<td>SM14-074</td>
</tr>
<tr>
<td>Inner Cable should be Slided Smoothly.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit: mm (in)
CHAPTER EB

EXHAUST BRAKE
(W04D, VACUUM CONTROL)

DATA AND SPECIFICATIONS EB-2
DESCRIPTION .. EB-2
TROUBLESHOOTING EB-3
BRAKE CYLINDER AND VACUUM CYLINDER EB-4
Control method: Electric-vacuum
Valve type: Butterfly valve
Applicable to: W04D

DESCRIPTION

1. Battery
2. Accelerator switch
3. Accelerator pedal
4. Clutch switch
5. Exhaust brake switch
6. Exhaust brake indicator lamp
7. Vacuum pump
8. Vacuum switch
9. Vacuum tank
10. Check valve
11. Magnetic valve
12. Air cleaner
13. Vacuum cylinder
14. Brake cylinder
A. Electric line
B. Air line
C. Accelerator cable
D. To injection pump
EXHAUST BRAKE

BRAKE CYLINDER AND VACUUM CYLINDER
1. Spindle
2. Valve
3. Body
4. Bush
5. Bracket
6. Lever
7. Shell cylinder
8. Diaphragm plate
9. Spring
10. Diaphragm
11. Gasket
12. Bearing
13. Push-rod
14. Clevis
15. Lever
16. Adjust screw (open side)
17. Adjust screw (close side)
A. Close side
B. Open side
C. To magnetic valve

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch does not work</td>
<td>Defective contacts</td>
<td>Check and correct.</td>
</tr>
<tr>
<td></td>
<td>Open circuit in harness</td>
<td>Check and correct.</td>
</tr>
<tr>
<td>Valve does not close</td>
<td>Valve clogged with carbon</td>
<td>Remove carbon.</td>
</tr>
<tr>
<td></td>
<td>Burnt shaft</td>
<td>Check and correct.</td>
</tr>
</tbody>
</table>
BRAKE CYLINDER AND VACUUM CYLINDER

1. Bushing
2. Brake cylinder
3. Sealing
4. Bracket
5. Adjust screw
6. Clevis
7. Pin
8. Clevis pin
9. Control cylinder
10. Bushing
11. Gasket
12. Lever
13. Dust cover

T = Tightening torque kg-cm (lb-ft.)

T = 200–250 (15–18)
T = 100–160 (8–11)
T = 100–160 (8–11)
IMPORTANT POINT(S) — DISMOUNTING

WARNING
Do not work on the exhaust brake cylinder while it is still hot.
This can result in personal injury.

IMPORTANT POINT(S) — DISASSEMBLY

REMOVAL OF THE BRACKET FROM THE BRAKE CYLINDER.
NOTE: Before removing the bracket, make aligning marks "A" on the brake cylinder and bracket.

IMPORTANT POINT(S) — ASSEMBLY

INSTALLATION OF THE SEAL RING AND BRACKET.

1. Install the bushing, seal rings, and bracket on the brake cylinder.

NOTE:
- The small seal rings "B" and large seal rings "C" must be installed alternately.
- Align the aligning marks "A" of the brake cylinder and bracket.

INSTALLATION OF THE VACUUM CYLINDER ON THE BRACKET.

1. Adjust the dimension "D" by turning the clevis "E" so that the push rod "F" is pushed into the control cylinder more than 2 mm (0.079 in), when the clevis "E" and the lever "G" are connected.

NOTE: This setting must be provided to prevent malfunction of the exhaust brake caused by looseness of linkage.

2. Install the vacuum cylinder on the bracket.

NOTE: Make sure that the water drain hole in the vacuum cylinder faces down.
1. Apply 650 – 750 mmHg (25.60 – 27.55 inHg) of vacuum to the vacuum cylinder and set the butterfly valve to the closed position.
2. Adjust the clearance between the brake cylinder and the butterfly valve C_1 and C_2 with the adjusting screw “A”.
Assembly Standard: 0.2 – 0.4 mm (0.008 – 0.015 in)
3. Lock the adjusting screw “A” with a lock nut.

ADJUSTMENT OF THE BUTTERFLY VALVE ANGLE (OPENED SIDE).
1. Set the lever to the opened position.
2. Adjust the butterfly valve may be right angle (90°) to the flange of the brake cylinder with the adjusting screw “B”.
3. Lock the adjusting screw “B” with a lock nut.

ADJUSTMENT OF THE EXHAUST BRAKE ACTING ENGINE SPEED.
1. Adjust the engine idling speed by turning the throttle button.
Engine Idling Speed: 600 – 650 r.p.m.
2. Adjust the exhaust brake acting engine speed by moving the accelerator switch body.
Acting Engine Speed: 700 – 800 r.p.m.
<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brake Cylinder, Bushing and Seal ring.* Wear, Any Other Damage</td>
<td>-</td>
<td>-</td>
<td>Replace, if necessary</td>
<td>VISUAL CHECK</td>
</tr>
</tbody>
</table>
| Exhaust Brake Switch Function | A: OFF-Insulation
B: ON-Continuity | - | Replace, if necessary | CHECK WITH A CIRCUIT TESTER |
| Clutch Switch Function | A: ON-Continuity
B: OFF-Insulation | - | Replace, if necessary | CHECK WITH A CIRCUIT TESTER |
| Accelerator Switch Function | A: OFF-Insulation
B: ON-Continuity | - | Replace, if necessary | CHECK WITH A CIRCUIT TESTER |
| Magnetic Valve Function | A: Normal -Continuity
B: Defect -Insulation | - | Replace, if necessary | CHECK WITH A CIRCUIT TESTER |
| Vacuum Cylinder Air Tight. | Non air tight. | More than 25 mmHg (0.98 in. Hg.) in 15 seconds | Replace the vacuum cylinder assembly |
CHAPTER WT

WHEELS AND TIRES

DATA AND SPECIFICATIONS.......................... WT- 2
DESCRIPTION .. WT- 5
TROUBLESHOOTING WT- 8
SPECIAL TOOLS .. WT-11
WHEEL AND TIRE WT-12
SAE AND DIN TYPE WT-12
SPOKE WHEEL TYPE WT-16
GENERAL INSPECTION WT-19
INSPECTION AND REPAIR WT-20
DATA AND SPECIFICATIONS

In case of using below table, see first the nominal dimension (Tire size) of the tire applied to the model which you are concerned with in the chassis specification filed in the Chap. 1, General Instruction.

The values given in the table are dependent on Japan Automobile Tire Manufacturers' Association (J.A.T.M.A.).

*(1) The values given are for dual tires and for single tire, deduct 1.0 mm from the value given.

*(2) The rims with mark (•) are standard and others are allowable to use.

*(3) The max. air pressure and max. load are referring to European Tire and Rim Technical Organization (E.T.R.T.O.)

1. Diagonal tires

<table>
<thead>
<tr>
<th>Tire size</th>
<th>Max. air press.</th>
<th>Allowable max. load kg (lb)</th>
<th>*(1) Tire dynamic effective radius mm (in)</th>
<th>*(2) Applicable rim size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/cm² (lb/in²)</td>
<td>Single</td>
<td>Dual</td>
<td></td>
</tr>
<tr>
<td>7.00-16-12PR</td>
<td>5.75 (82.0)</td>
<td>1,230</td>
<td>1,170</td>
<td>368 (14.49)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2,712)</td>
<td>(2,579)</td>
<td></td>
</tr>
<tr>
<td>7.50-16-12PR</td>
<td>6.00 (85.0)</td>
<td>1,440</td>
<td>1,370</td>
<td>383 (15.08)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,175)</td>
<td>(3,020)</td>
<td></td>
</tr>
<tr>
<td>7.50-16-14PR</td>
<td>6.50 (92.0)</td>
<td>1,510</td>
<td>1,440</td>
<td>448 (17.64)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,329)</td>
<td>(3,175)</td>
<td></td>
</tr>
<tr>
<td>7.50-20-10PR</td>
<td>5.75 (82.0)</td>
<td>1,650</td>
<td>1,550</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,637)</td>
<td>(3,417)</td>
<td></td>
</tr>
<tr>
<td>7.50-20-12PR</td>
<td>6.75 (96.0)</td>
<td>1,800</td>
<td>1,700</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,968)</td>
<td>(3,747)</td>
<td></td>
</tr>
<tr>
<td>8.25-16-14PR</td>
<td>6.75 (96.0)</td>
<td>1,710</td>
<td>1,630</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(3,770)</td>
<td>(3,593)</td>
<td></td>
</tr>
<tr>
<td>8.25-20-12PR</td>
<td>6.25 (89.0)</td>
<td>1,940</td>
<td>1,845</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4,277)</td>
<td>(4,067)</td>
<td></td>
</tr>
<tr>
<td>8.25-20-14PR</td>
<td>6.75 (96.0)</td>
<td>2,030</td>
<td>1,930</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4,475)</td>
<td>(4,277)</td>
<td></td>
</tr>
<tr>
<td>9.00-20-12PR</td>
<td>6.00 (85.0)</td>
<td>2,255</td>
<td>2,145</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4,971)</td>
<td>(4,729)</td>
<td></td>
</tr>
<tr>
<td>9.00-20-14PR</td>
<td>6.75 (96.0)</td>
<td>2,415</td>
<td>2,300</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5,324)</td>
<td>(5,071)</td>
<td></td>
</tr>
<tr>
<td>10.00-20-12PR</td>
<td>6.75 (96.0)</td>
<td>2,450</td>
<td>2,210</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5,401)</td>
<td>(4,872)</td>
<td></td>
</tr>
<tr>
<td>10.00-20-14PR</td>
<td>6.75 (96.0)</td>
<td>2,700</td>
<td>2,425</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5,952)</td>
<td>(5,346)</td>
<td></td>
</tr>
<tr>
<td>*(3) 10.00-20-16PR</td>
<td>7.70 (109)</td>
<td>3,000</td>
<td>2,725</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6,814)</td>
<td>(6,008)</td>
<td></td>
</tr>
<tr>
<td>11.00-20-12PR</td>
<td>5.75 (82.0)</td>
<td>2,585</td>
<td>2,435</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(5,699)</td>
<td>(5,368)</td>
<td></td>
</tr>
<tr>
<td>11.00-20-14PR</td>
<td>6.75 (96.0)</td>
<td>2,840</td>
<td>2,670</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6,261)</td>
<td>(5,886)</td>
<td></td>
</tr>
<tr>
<td>11.00-20-16PR</td>
<td>7.25 (103)</td>
<td>3,100</td>
<td>2,785</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6,834)</td>
<td>(6,140)</td>
<td></td>
</tr>
<tr>
<td>12.00-20-14PR</td>
<td>5.75 (82.0)</td>
<td>2,900</td>
<td>2,760</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6,393)</td>
<td>(6,085)</td>
<td></td>
</tr>
<tr>
<td>12.00-20-16PR</td>
<td>6.50 (92.0)</td>
<td>3,115</td>
<td>2,965</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(6,867)</td>
<td>(6,537)</td>
<td></td>
</tr>
<tr>
<td>*(3) 12.00-20-18PR</td>
<td>7.95 (112.5)</td>
<td>3,750</td>
<td>3,250</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8,257)</td>
<td>(7,165)</td>
<td></td>
</tr>
<tr>
<td>12.00-24-16PR</td>
<td>6.50 (92.0)</td>
<td>3,505</td>
<td>3,340</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(7,727)</td>
<td>(7,363)</td>
<td></td>
</tr>
<tr>
<td>*(3) 12.00-24-18PR</td>
<td>7.95 (112.5)</td>
<td>4,000</td>
<td>3,650</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(8,888)</td>
<td>(8,111)</td>
<td></td>
</tr>
<tr>
<td>14.00-24-20PR</td>
<td>6.75 (96.0)</td>
<td>4,980</td>
<td>4,755</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(11,001)</td>
<td>(10,483)</td>
<td></td>
</tr>
</tbody>
</table>
Disc wheel is applied on Deutsche Industrie Norman (DIN).

2. Radial tires (with tube)

<table>
<thead>
<tr>
<th>Tire size</th>
<th>Max. air press. kg/cm² (lb/in²)</th>
<th>Allowable max. load kg (lb)</th>
<th>*(1) Tire dynamic effective radius mm (in)</th>
<th>*(2) Applied rim size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Single</td>
<td>Dual</td>
<td></td>
</tr>
<tr>
<td>7.50R-16-14PR</td>
<td>7.0 (100)</td>
<td>1,510</td>
<td>1,440</td>
<td>387 (15.24)</td>
</tr>
<tr>
<td>7.50R-12-14PR</td>
<td>7.25 (103)</td>
<td>1,650</td>
<td>1,550</td>
<td>448 (17.64)</td>
</tr>
<tr>
<td>8.25R-16-14PR</td>
<td>6.75 (96.0)</td>
<td>2,030</td>
<td>1,930</td>
<td>468 (48.43)</td>
</tr>
<tr>
<td>9.00-20-14PR</td>
<td>6.75 (96.0)</td>
<td>2,411</td>
<td>2,300</td>
<td>490 (19.29)</td>
</tr>
<tr>
<td>10.00-20-14PR</td>
<td>6.75 (96.0)</td>
<td>2,700</td>
<td>2,425</td>
<td>506 (19.92)</td>
</tr>
<tr>
<td>12.00-20-14PR</td>
<td>5.75 (82.0)</td>
<td>2,900</td>
<td>2,760</td>
<td>539 (21.22)</td>
</tr>
</tbody>
</table>
3. Radial tires (Tubeless)

<table>
<thead>
<tr>
<th>Tire size</th>
<th>Max. air press. kg/cm² (lb/in²)</th>
<th>Allowable max. load kg (lb)</th>
<th>*{(1)} Tire dynamic effective radius mm (in)</th>
<th>*{(2)} Applicable rim size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Dual</td>
<td></td>
<td></td>
</tr>
<tr>
<td>225/80R 17.5-14PR</td>
<td>7.00 (100)</td>
<td>1,550 (3,417)</td>
<td>1,500 (3,307)</td>
<td>389 (15.31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>225/90R 17.5-14PR</td>
<td>7.00 (100)</td>
<td>1,750 (3,858)</td>
<td>1,650 (3,638)</td>
<td>410 (16.14)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9R22.5-14PR</td>
<td>7.25 (103)</td>
<td>2,030 (4,475)</td>
<td>1,930 (4,255)</td>
<td>470 (18.50)</td>
</tr>
<tr>
<td>*(3) 9.5R-17.5-14PR</td>
<td>6.85 (98.0)</td>
<td>1,700 (3,748)</td>
<td>1,600 (3,527)</td>
<td>6.75 x 17.5 6.00 x 17.5</td>
</tr>
<tr>
<td>10R22.5-14PR</td>
<td>7.25 (103)</td>
<td>2,415 (5,324)</td>
<td>2,300 (5,071)</td>
<td>492 (19.37)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11R22.5-14PR</td>
<td>7.00 (100)</td>
<td>2,725 (5,907)</td>
<td>2,500 (5,511)</td>
<td>508 (20.0)</td>
</tr>
<tr>
<td>11R22.5-16PR</td>
<td>8.00 (113)</td>
<td>3,000 (6,613)</td>
<td>2,725 (6,007)</td>
<td>508 (20.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12R22.5-14PR</td>
<td>7.25 (103)</td>
<td>3,000 (6,613)</td>
<td>2,725 (6,007)</td>
<td>523 (20.59)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Off the road tire (1-1R)

<table>
<thead>
<tr>
<th>Tire size</th>
<th>Max. air press. kg/cm² (lb/in²)</th>
<th>Allowable max. load kg (lb)</th>
<th>Tire static effective radius mm (in)</th>
<th>*(2) Applicable rim size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.50-20-12PR</td>
<td>5.25 (75.0)</td>
<td>1,600 (3,527)</td>
<td>447 (17.6)</td>
<td>6.00S</td>
</tr>
<tr>
<td>8.25-20-12PR</td>
<td>5.25 (75.0)</td>
<td>1,890 (4,167)</td>
<td>465 (18.3)</td>
<td>6.00S 6.50T</td>
</tr>
<tr>
<td>8.25-20-14PR</td>
<td>6.00 (85.0)</td>
<td>2,045 (4,508)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.00-20-12PR</td>
<td>4.75 (68.0)</td>
<td>2,120 (4,674)</td>
<td>486 (19.1)</td>
<td>6.50T 7.00T</td>
</tr>
<tr>
<td>9.00-20-14PR</td>
<td>5.50 (78.0)</td>
<td>2,310 (5,083)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00-20-14PR</td>
<td>5.00 (71.0)</td>
<td>2,470 (5,445)</td>
<td>500 (19.7)</td>
<td>7.00T 7.50T 8.00V</td>
</tr>
<tr>
<td>11.00-20-14PR</td>
<td>4.75 (68.0)</td>
<td>2,605 (5,743)</td>
<td>513 (20.2)</td>
<td>7.50V 8.00V 8.50V</td>
</tr>
<tr>
<td>12.00-20-14PR</td>
<td>4.25 (60.0)</td>
<td>2,795 (6,162)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00-20-16PR</td>
<td>5.00 (71.0)</td>
<td>3,075 (6,779)</td>
<td>532 (20.9)</td>
<td>800V 8.50V 9.00V</td>
</tr>
<tr>
<td>12.00-20-18PR</td>
<td>5.50 (78.0)</td>
<td>3,250 (7,165)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00-24-16PR</td>
<td>5.00 (71.0)</td>
<td>3,460 (7,628)</td>
<td>582 (22.9)</td>
<td>8.00V 8.50V 9.00V</td>
</tr>
<tr>
<td>13.00-24-18PR</td>
<td>5.00 (71.0)</td>
<td>4,000 (8,818)</td>
<td>606 (23.9)</td>
<td>8.50V 9.00V</td>
</tr>
<tr>
<td>14.00-20-16PR</td>
<td>4.25 (60.0)</td>
<td>3,850 (8,488)</td>
<td>584 (23.0)</td>
<td>9.00V 10.00W</td>
</tr>
<tr>
<td>14.00-24-16PR</td>
<td>4.25 (60.0)</td>
<td>4,295 (9,469)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.00-24-20PR</td>
<td>5.25 (75.0)</td>
<td>4,865 (10,725)</td>
<td>635 (25.0)</td>
<td>9.00V 10.00W</td>
</tr>
<tr>
<td>14.00-24-24PR</td>
<td>6.50 (92.0)</td>
<td>5,510 (12,147)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WHEELS AND TIRES

DESCRIPTION

SAE TYPE
1. Tire
2. Disc wheel
3. Side ring
4. Hub bolt
5. Hub nut, inner
6. Hub nut, outer
7. Hub
A. Front
B. Rear

DIN TYPE
1. Tire
2. Disc wheel
3. Side ring
4. Hub bolt
5. Hub nut
6. Hub
A. Front
B. Rear

T = Tightening torque: kg-cm (lb.ft)
SPOKE WHEEL TYPE
1. Tire
2. Rim
3. Clamp bolt
4. Clamp nut
5. Clamp
6. Spoke wheel
7. Brake drum
8. Band spacer

T = 2,700—3,000 (196—216)

A. Front
B. Rear

T = Tightening torque: kg-cm (lb.ft)

SM16-033
SM16-012

SM16-015
SM16-016

ADAPTER TYPE SPOKE WHEEL (Only for rear)
1. Tire
2. Rim
3. Clamp bolt
4. Clamp nut
5. Clamp
6. Hub
7. Hub bolt
8. Hub nut
9. Adapter
10. Brake drum
11. Band spacer
WHEEL AND TIRE

1. Tire
2. Tube
3. Flap

4. Side ring
5. Disc wheel
6. Valve

T = Tightening torque: kg-cm (lb.ft)

A. With tube
B. Tubeless

SM16-016
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excessive wear on edges of tread</td>
<td>Underinflated tires.</td>
<td>Properly inflate to recommended pressure.</td>
</tr>
<tr>
<td></td>
<td>Vehicle overloading.</td>
<td>Correct as required.</td>
</tr>
<tr>
<td></td>
<td>High speed cornering.</td>
<td>Correct as required.</td>
</tr>
<tr>
<td></td>
<td>Incorrect wheel alignment.</td>
<td>Set to correct specifications.</td>
</tr>
<tr>
<td>Tires show excessive wear in center of tread</td>
<td>Tires overinflated.</td>
<td>Properly inflate to recommended pressure.</td>
</tr>
<tr>
<td>Excessive tire wear</td>
<td>Improper tire pressure.</td>
<td>Properly inflate to recommended pressure.</td>
</tr>
<tr>
<td></td>
<td>Incorrect tire wheel usage.</td>
<td>Install correct tire wheel combination.</td>
</tr>
<tr>
<td></td>
<td>Defective shock absorbers.</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td></td>
<td>Front end out of alignment.</td>
<td>Align front end.</td>
</tr>
<tr>
<td></td>
<td>Loose, worn or damaged steering</td>
<td>Inspect, repair or replace as required.</td>
</tr>
<tr>
<td></td>
<td>Rims or hub and drum, Incorrect positioning of the side</td>
<td>Reassemble with ring split opposite (180 degrees) the valve opening to improve balance.</td>
</tr>
<tr>
<td>Wheel hop (vehicle vibration and rough</td>
<td>Disc wheels</td>
<td>Remove rocks and debris.</td>
</tr>
<tr>
<td>steering)</td>
<td>- Rocks or debris wedged between dual disc wheels</td>
<td>Determine the out-of-balance component and balance or replace.</td>
</tr>
<tr>
<td></td>
<td>- Out-of-balance tire and/or hub and drum</td>
<td>Reassemble with ring split opposite (180 degrees) the valve opening to improve balance.</td>
</tr>
<tr>
<td></td>
<td>- Improper positioning of the side</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Vehicle]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Loose or worn drive line or suspension</td>
<td>Identify location of vibration carefully as it may be transmitted through the frame making a rear end vibration appear to come from the front. Then repair or replace loose or worn parts. (Refer to PROPELLER SHAFT for vehicle vibration.)</td>
</tr>
<tr>
<td>Symptom</td>
<td>Possible cause</td>
<td>Remedy/Prevention</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Wobble (vehicle vibrations and rough steering)</td>
<td>Disc wheels: • Bent or distorted disc from overloading or improper handling.</td>
<td>Replace wheel.</td>
</tr>
<tr>
<td></td>
<td>• Loose mountings, damaged studs, wheel nuts, enlarged stud holes, worn or broken hub face, or foreign material on mounting surfaces.</td>
<td>Replace worn or damaged parts. Clean mounting surfaces.</td>
</tr>
<tr>
<td></td>
<td>Vehicle: • Improper alignment.</td>
<td>Have vehicle aligned.</td>
</tr>
<tr>
<td></td>
<td>• Loose worn or broken suspension.</td>
<td>Repair or replace.</td>
</tr>
<tr>
<td>Cracked or broken wheel discs (cracks develop in the wheel disc from hand hole to hand hole, from hand hole to rim, or from hand hole to stud hole.)</td>
<td>Metal fatigue resulting from overloading.</td>
<td>Replace wheel.</td>
</tr>
<tr>
<td>Damaged stud holes (stud holes become worn, elongated or deformed, metal builds up around stud hole edges, cracks develop from stud hole to stud hole.)</td>
<td>Loose wheel mounting.</td>
<td>Replace wheel and check for. Installation of correct studs and nuts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cracked or broken studs - replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Worn hub face - replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Broken or cracked hub replace.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clean mounting surfaces, (retorque wheel nuts periodically).</td>
</tr>
<tr>
<td>Tire slippage on rim</td>
<td>Disc wheels: • Improper storage or operating conditions.</td>
<td>Correct as required.</td>
</tr>
<tr>
<td></td>
<td>• Poor maintenance.</td>
<td>Follow proper maintenance procedures.</td>
</tr>
<tr>
<td></td>
<td>• Rust, corrosion or bead seating.</td>
<td>Correct as required.</td>
</tr>
<tr>
<td></td>
<td>• Loss of pressure.</td>
<td>Follow proper maintenance procedures.</td>
</tr>
<tr>
<td>Symptom</td>
<td>Possible cause</td>
<td>Remedy/Prevention</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Tire mounting difficulties</td>
<td>Wheel rims</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mismatched tire and rim sizes</td>
<td>Correct as required.</td>
</tr>
<tr>
<td></td>
<td>- Defective or mismatched rings for rim use</td>
<td>Correct as required.</td>
</tr>
<tr>
<td></td>
<td>- Overinflation of tires</td>
<td>Follow recommended tire pressure.</td>
</tr>
<tr>
<td></td>
<td>- Corrosion and dirt</td>
<td>Correct as required.</td>
</tr>
<tr>
<td>Loose inner wheel</td>
<td>Excessive stud standout from mounting face of hub allowing</td>
<td>Replace with proper length hub</td>
</tr>
<tr>
<td></td>
<td>wheel nut to bottom out</td>
<td>bolt.</td>
</tr>
<tr>
<td></td>
<td>Improper torque</td>
<td>Use recommended torque procedure.</td>
</tr>
<tr>
<td></td>
<td>Wrong inner nut</td>
<td>Use correct nuts.</td>
</tr>
<tr>
<td>Broken wheel studs</td>
<td>Loose wheel nuts</td>
<td>Replace stud and follow proper</td>
</tr>
<tr>
<td></td>
<td>Overloading</td>
<td>torque procedures.</td>
</tr>
<tr>
<td>Stripped threads</td>
<td>Excessive clamp load</td>
<td>Replace studs - follow proper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>torque procedure.</td>
</tr>
<tr>
<td>Rust streaks from</td>
<td>Loose wheel nuts</td>
<td>Check complete assembly, replace</td>
</tr>
<tr>
<td>stud holes</td>
<td></td>
<td>damaged parts and follow proper</td>
</tr>
<tr>
<td></td>
<td></td>
<td>torque procedure.</td>
</tr>
<tr>
<td>Damaged inner or</td>
<td>Loose wheel assembly</td>
<td>Replace wheel nuts. Check for</td>
</tr>
<tr>
<td>outer wheel nuts</td>
<td></td>
<td>proper torque procedure.</td>
</tr>
<tr>
<td>Frozen inner or</td>
<td>Corrosion or galling</td>
<td>Replace wheel nuts and hub bolts.</td>
</tr>
<tr>
<td>outer wheel nuts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prior to starting a wheel and tire overhaul, it is necessary to have these special tools.

LEVER

09672-1010

LEVER

09672-1020

LEVER

09672-1040

LEVER

09609-1210

RUBBER HAMMER

09609-1220
IMPORTANT POINT – DISMOUNTING
THE DISC WHEEL (SAE AND DIN TYPE)

<table>
<thead>
<tr>
<th>SAE</th>
<th>General tools carried in vehicle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>09849-4121, 09849-2501</td>
</tr>
<tr>
<td>DIN</td>
<td>General tools carried in vehicle</td>
</tr>
<tr>
<td></td>
<td>09849-3201, 09849-2501</td>
</tr>
</tbody>
</table>

NOTE: The hub bolts and nuts on the right side of the vehicle have right-hand threads, and its on the left side have left-hand threads.

IMPORTANT POINT (S) – DISASSEMBLY
THE DISC WHEEL AND TIRE (WITH TUBE)
1. Release the air pressure in the tire.
 Remove the ring.
 Special Tool: Lever (09672-1040)

THE DISC WHEEL AND TIRE (TUBELESS)
1. Remove the valve and exhaust the air from the tire. Then hammer the tire to separate the tire bead from the rim.
 Special Tool: Rubber Hammer (09609-1220)

2. Apply the lubricant or soap water for the rim flange.

NOTE: The lubricant, recommended by tire manufacturer can only be used.
3. Insert the levers between the tire bead and the rim flange. Then lift the tire bead so that the bead gets over the rim flange.

 Special Tool: Lever (09609-1210)

4. Turn the wheel over.
5. Insert the lever between the tire bead and the rim flange. Then lift the rim flange so that the flange gets over the tire bead.

 Special Tool: Lever (09609-1210)

IMPORTANT POINT(S) — ASSEMBLY

WHEEL AND TIRE (WITH TUBE)

1. Put the side ring on the wheel and fit it in the flange on the clicking part of the rim.

 Special Tool: Lever (09672-1040)

2. Check that the side ring is properly fitted into the rim groove.

3. Measure the side ring end clearance.

<table>
<thead>
<tr>
<th></th>
<th>Assembly standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>IR</td>
<td>2 – 7 mm (0.079 – 0.276 in)</td>
</tr>
<tr>
<td>SDC</td>
<td>2 – 6 mm (0.079 – 0.236 in)</td>
</tr>
</tbody>
</table>
WHEEL AND TIRES

WHEEL AND TIRE (TUBELESS)

1. Install the valve to the rim.
 Valve Nut Tightening Torque: 130 kg-cm (9.4 lb.ft)

2. Apply the lubricant or soap water for the bead of the tire.
 NOTE: The lubricant recommended by tire manufacturer can only be used.

3. Hammer the lower bead so that the bead get over the rim flange.
 Special Tool: Rubber Hammer (09609-1220)

4. Apply the lubricant or soap water for upper bead of the tire.
 NOTE: The lubricant recommended by tire manufacturer can only be used.

5. Insert the lever between the rim flange and the tire bead. Then lift the lever so that the bead get over the rim flange.
 Special Tool: Lever (09609-1210)

6. Hammer the tread of the tire so that the bead and seating portion of the rim will be seated.
 Special Tool: Rubber Hammer (09609-1220)
IMPORTANT POINT – MOUNTING
THE DISC WHEEL (SAE AND DIN TYPE)

1. Apply lubricant (Engine oil or grease) for the threads part of the hub bolts and the nuts.

2. Clean the mounting surface of the wheel hub or the brake drum and the disc wheel.

<table>
<thead>
<tr>
<th>SAE type</th>
<th>General tools carried in vehicle</th>
<th>20°</th>
<th>09840-4121, 09849-2501</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>18°</td>
<td>09840-3517, 09849-2203</td>
</tr>
<tr>
<td>DIN type</td>
<td></td>
<td></td>
<td>09849-3201, 09849-2501</td>
</tr>
</tbody>
</table>

Tightening torque

<table>
<thead>
<tr>
<th>SAE type</th>
<th>20°</th>
<th>4,000–4,800 kg·cm (289–347 lb·ft)</th>
<th>A=60 kg (132.3 lb)</th>
<th>B= 80 cm (31.5 in)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>18°</td>
<td>2,400–3,000 kg·cm (174–216 lb·ft)</td>
<td>A=60 kg (132.3 lb)</td>
<td>B= 50 cm (19.7 in)</td>
</tr>
<tr>
<td>DIN type</td>
<td>5,000–6,000 kg·cm (362–434 lb·ft)</td>
<td>A=60 kg (132.3 lb)</td>
<td>B=100 cm (39.4 in)</td>
<td></td>
</tr>
</tbody>
</table>

3. Tighten the hub nuts with using criss-cross method as shown figure and through several repetitions of the tightening order so as to reach torque gradually and evenly.

NOTE: The hub bolts and nuts on the right side of the vehicle have right-hand threads, and its on the left side have left-hand threads.
WHEEL AND TIRE
(SPOKE WHEEL TYPE)

IMPORTANT POINT (S) – DISMOUNTING
THE SPOKE WHEEL.
1. Removing single wheel
 Release the nuts, and lift the wheel from the hub.
 General tools carried in vehicle (09839-2701, 09672-1030)

2. Remove twin wheels.
 Unscrew the nuts.
3. Remove the clamps.
 Special Tool: Lever (09672-1010)

IMPORTANT POINT (S) – DISASSEMBLY
THE RIM AND TIRE FOR SPOKE WHEEL.
1. Remove the rim.
 Press down the side of tire.
 Special Tool: Lever (09672-1010, 09672-1020)

2. Place the lever in the joint of the rim and separate the rim.
 Special Tool: Lever (09672-1010)
IMPORTANT POINT – ASSEMBLY

THE SPOKE WHEEL.

1. Place the fitting lever in the slot on the valve rim. By evenly
 on the lever, the third segment is fitted into position and
 locked securely.

NOTE: Do not pull upward.

IMPORTANT POINT (S) – MOUNTING

THE SINGLE WHEEL.

1. Install the wheel over the spoke ends so that the valve and
 stopper “A” of the rim come between two spokes.

2. First, fit the clamps (upper side and lower side) and tighten
 the clamp nuts lightly. Then tighten the clamp nuts in se¬
 quence round the rim edge.

General tools carried in vehicle: 09839-2701, 09672-1030

| Tightening torque | 2,700 – 3,000 kg·cm (195 – 217 lb·ft) | A = 60 kg (132.3 lb) | B = 60 cm (19.7 in) |

THE TWIN WHEELS.

1. Install the inner wheel so that the valve and stopper “A” of
 the rim are between two spokes.
2. Install the outer wheel, fit the clamp (upper side and lower side) and then tighten the clamp nut lightly. Then fit the other clamps and nuts, then tighten it in sequence round the rim ring.

THE FOLLOWING ORDER AND INSTRUCTIONS ARE NECESSARY FOR INSTALLING DOUBLE TIRES.

1. Installation procedures for the inner wheel nuts are the same as in 1. through 4. above.
2. Installation procedures for the outer wheel nuts are the same as above.
3. When only the outer wheel is replaced, first tighten all the inner wheel nuts to the specified torque. Then mount the outer wheel and tighten all the outer wheel nuts to the torque.

NOTE:
- Install dual rear wheels with their valve stems positioned 180 degrees apart to facilitate inflation.
- Tighten all the inner nuts and outer nuts according to the above-mentioned procedures.
GENERAL INSPECTION

1. Check the tire thread wear (groove depth) and tire damage. If the slip sign on the tire tread comes out, replace the tire.

Groove depth (Remaining groove)
- General running: 1.6 mm (0.063 in)
- High-speed running: 3.2 mm (0.126 in)

2. Inspect for wheel wobble.
 Repair Limit: 5 mm (0.196 in)

3. Check for air pressure.
INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tire</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Damage, Foreign matter, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tubeless tire.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Air leakage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel for the tire with tube.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Cracks, Deformation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheel for the tubeless tire.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Cracks, Deformation.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rim</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe, nut and O-ring of the valve.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection Item</td>
<td>Standard</td>
<td>Limit</td>
<td>Remedy</td>
<td>Inspection Procedure</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>--------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Disc wheel side wobble.</td>
<td>0—2 mm (0—0.079 in)</td>
<td>4 mm (0.157 in)</td>
<td>Replace</td>
<td></td>
</tr>
<tr>
<td>Off set: Less than 115</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off set: 0—1.8 mm (0—0.071 in)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER SU
SUSPENSION
Models AB and RB

DATA AND SPECIFICATIONS SU-2
DESCRIPTION .. SU-3
TROUBLESHOOTING ... SU-4
FRONT LEAF SPRING .. SU-5
REAR LEAF SPRING .. SU-6
Data and Specifications

Front

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Dimensions of leaf springs:</th>
<th>Shock absorbers:</th>
<th>Stabilizer:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semi-elliptic leaf springs with shock absorbers</td>
<td>span</td>
<td>1,200 mm (47.24 in)</td>
<td>Type: Double acting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Width</td>
<td>70 mm (2.76 in)</td>
<td>Stroke: 240 mm (9.45 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thickness x number</td>
<td>16 mm (0.63 in) x 2</td>
<td>Min. length: 335 mm (13.19 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max. length: 575 mm (22.64 in)</td>
</tr>
<tr>
<td></td>
<td>Semi-elliptic leaf springs with shock absorbers and stabilizer</td>
<td></td>
<td></td>
<td>Torsion bar</td>
</tr>
</tbody>
</table>

Rear

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Dimensions of leaf springs:</th>
<th>Shock absorbers:</th>
<th>Stabilizer:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semi-elliptic main and auxiliary leaf springs with shock absorbers</td>
<td>span</td>
<td>1,300 mm (51.18 in)</td>
<td>Type: Double acting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Width</td>
<td>70 mm (2.76 in)</td>
<td>Stroke: 225 mm (8.86 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thickness x number</td>
<td>14 mm (0.55 in) x 4</td>
<td>Min. length: 333 mm (13.11 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max. length: 558 mm (21.97 in)</td>
</tr>
<tr>
<td></td>
<td>Semi-elliptic main and auxiliary leaf springs with shock absorbers and stabilizer</td>
<td></td>
<td></td>
<td>Torsion bar</td>
</tr>
</tbody>
</table>

(Extraction results from the image are as follows:)

SU-2 Suspension

Data and Specifications

Front

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Dimensions of leaf springs:</th>
<th>Shock absorbers:</th>
<th>Stabilizer:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semi-elliptic leaf springs with shock absorbers</td>
<td>span</td>
<td>1,200 mm (47.24 in)</td>
<td>Type: Double acting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Width</td>
<td>70 mm (2.76 in)</td>
<td>Stroke: 240 mm (9.45 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thickness x number</td>
<td>16 mm (0.63 in) x 2</td>
<td>Min. length: 335 mm (13.19 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max. length: 575 mm (22.64 in)</td>
</tr>
<tr>
<td></td>
<td>Semi-elliptic leaf springs with shock absorbers and stabilizer</td>
<td></td>
<td></td>
<td>Torsion bar</td>
</tr>
</tbody>
</table>

Rear

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Dimensions of leaf springs:</th>
<th>Shock absorbers:</th>
<th>Stabilizer:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semi-elliptic main and auxiliary leaf springs with shock absorbers</td>
<td>span</td>
<td>1,300 mm (51.18 in)</td>
<td>Type: Double acting</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Width</td>
<td>70 mm (2.76 in)</td>
<td>Stroke: 225 mm (8.86 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thickness x number</td>
<td>14 mm (0.55 in) x 4</td>
<td>Min. length: 333 mm (13.11 in)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Max. length: 558 mm (21.97 in)</td>
</tr>
<tr>
<td></td>
<td>Semi-elliptic main and auxiliary leaf springs with shock absorbers and stabilizer</td>
<td></td>
<td></td>
<td>Torsion bar</td>
</tr>
</tbody>
</table>
DESCRIPTION

FRONT LEAF SPRING
1. Spring pin
2. Shock absorber
3. Bumper rubber
4. Stabilizer (For model RB)
5. Leaf spring assembly
6. U-bolt

REAR LEAF SPRING (FOR MODEL AB)
1. Spring pin
2. Leaf spring assembly
3. U-bolt
4. Shock absorber
Troubleshooting

REAR LEAF SPRING (FOR MODEL RB)

1. Spring pin
2. Shock absorber
3. U-bolt
4. Leaf spring assembly
5. Stabilizer

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rough ride</td>
<td>Broken leaves</td>
<td>Replace the leaves.</td>
</tr>
<tr>
<td></td>
<td>Cracked or damaged.</td>
<td>Replace the leaves.</td>
</tr>
<tr>
<td></td>
<td>Overloading</td>
<td>Decrease the load.</td>
</tr>
<tr>
<td>Heavy sway</td>
<td>Inoperative shock absorber.</td>
<td>Replace the shock absorber.</td>
</tr>
<tr>
<td>Leaves broken at the</td>
<td>Loose U-bolts</td>
<td>Tighten to specified torque.</td>
</tr>
<tr>
<td>center bolt hole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squeaking of the leaves</td>
<td>Friction between the leaves.</td>
<td>Apply chassis grease between leaves.</td>
</tr>
</tbody>
</table>
FRONT LEAF SPRING

T = 500–630 (37–45)

T = 2,500–3,300 (181–238)

T = 1,400–1,700 (102–122)

T = Tightening torque: kg-cm (lb.ft.)

<table>
<thead>
<tr>
<th>bolt and nut</th>
<th>kg-cm (lb.ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm diameter</td>
<td>190–260 (14–18)</td>
</tr>
<tr>
<td>10 mm diameter</td>
<td>380–500 (28–36)</td>
</tr>
<tr>
<td>12 mm diameter</td>
<td>650–970 (47–62)</td>
</tr>
<tr>
<td>14 mm diameter</td>
<td>1,100–1,500 (80–108)</td>
</tr>
<tr>
<td>16 mm diameter</td>
<td>1,700–2,300 (123–166)</td>
</tr>
<tr>
<td>18 mm diameter</td>
<td>2,500–3,300 (181–238)</td>
</tr>
</tbody>
</table>

1. Cushion washer
2. Cushion
3. Stabilizer bar
4. Stabilizer rod
5. Stiffener
6. Stabilizer bracket
7. Stabilizer bar sleeve
8. Stabilizer holder
9. Rubber bushing
10. Spring pin
11. U-bolt
12. Spring bumper
13. Leaf spring assembly
14. Spacer
15. Caster shim
16. Stabilizer bar lever
17. Shackle
18. Shock absorber
19. Shock absorber pin
20. Case
21. Collar
22. Rivet
23. Clip
24. Inter leaf
25. Silencer
REAR LEAF SPRING

For model AB
BC58-506-00X00 (5800)*

T = Tightening torque: kg-cm (lb.ft.)

<table>
<thead>
<tr>
<th>Bolt and Nut</th>
<th>kg-cm (lb-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm diameter</td>
<td>190–260 (14–18)</td>
</tr>
<tr>
<td>10 mm diameter</td>
<td>380–500 (28–36)</td>
</tr>
<tr>
<td>12 mm diameter</td>
<td>650–870 (47–62)</td>
</tr>
<tr>
<td>14 mm diameter</td>
<td>1,100–1,500 (80–108)</td>
</tr>
<tr>
<td>16 mm diameter</td>
<td>1,700–2,300 (123–166)</td>
</tr>
<tr>
<td>18 mm diameter</td>
<td>2,500–3,300 (181–238)</td>
</tr>
</tbody>
</table>

1. U-bolt
2. Spring pad
3. Spacer
4. Leaf spring assembly
5. Spring pin
6. Rubber bushing
7. Shackle
8. Spring bumper
9. Setting plate
10. Shock absorber
11. Cushion washer
12. Inter leaf
13. Revet
14. Clip
15. Silencer
16. Case
17. Cushion
For model RB

T = 870—1,100 (63—79)

T = 1,400—1,700 (102—122)

T = Tightening torque: kg-cm (lb.ft.)

<table>
<thead>
<tr>
<th>bolt and nut</th>
<th>kg-cm (lb.ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm diameter</td>
<td>190—260 (14—18)</td>
</tr>
<tr>
<td>10 mm diameter</td>
<td>380—500 (28—36)</td>
</tr>
<tr>
<td>12 mm diameter</td>
<td>650—870 (47—62)</td>
</tr>
<tr>
<td>14 mm diameter</td>
<td>1,100—1,500 (80—108)</td>
</tr>
<tr>
<td>16 mm diameter</td>
<td>1,700—2,300 (123—166)</td>
</tr>
<tr>
<td>18 mm diameter</td>
<td>2,500—3,300 (181—238)</td>
</tr>
</tbody>
</table>

1. Cushion washer
2. Cushion
3. Stabilizer link rod
4. Stabilizer holder
5. Stabilizer bar sleeve
6. Stabilizer bar
7. Stabilizer bar lever
8. Spring pin
9. Shackle
10. Rubber bushing
11. U-bolt
12. Spring pad
13. Spacer
14. Leaf spring assembly
15. Setting plate
16. Spring bumper
17. Shock absorber
18. Case
19. Inter leaf
20. Revet
21. Clip
22. Silencer
IMPORTANT POINT(S) — DISASSEMBLY

SUPPORT THE FRAME WITH STANDS.
1. Park the vehicle on level ground.
2. Jack up the axle, and support the frame with stands.
3. Remove the tires.

REMOVAL OF THE U-BOLT.
1. Remove the stabilizer (if so installed).
2. Remove the shock absorber (if so installed).
3. Support the axle with jack.
4. Using socket wrench, remove the U-bolt mounting nuts.
 Socket Wrench B: 22 mm (0.87 in)

NOTE: When cutting off the U-bolts (due to rusted threads) with a torch, never direct the flame toward the leaves or allow sparks to come in contact with the leaves.

REMOVAL OF THE SPRING PIN.
1. Remove the nut.
2. Using a brass rod, remove the spring pin.

DISASSEMBLY OF THE LEAF SPRING.
Using a vise or an arber press for holding the leaf spring in place while disassembling.

WARNING
When disassembling the leaf spring, care should be taken to avoid possible personal injury.

IMPORTANT POINT(S) — ASSEMBLY

APPLY CHASSIS GREASE ON SURFACE OF LEAF
1. Apply coating on the leaf after removing rust, and apply chassis grease on both surface at leaves.
2. Using a vise or an arber press for holding the leaf spring in place while assembling.

WARNING

When assembling the leaf spring, care should be taken to avoid possible personal injury.

3. Tighten the clip bolts with collars.
4. Using a punch, peen the thread of clip bolts.

INSTALLATION OF THE SPRING PIN.

NOTE:
- When installing the spring pin, apply soapy water for spring pin and rubber bushing.
- Do not apply the grease on the rubber bushings.

INSTALLATION OF THE caster shim.

NOTE: When installing the caster shim, the thick end should face rear.

<table>
<thead>
<tr>
<th>With power steering</th>
<th>To front</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without power steering</td>
<td>Non caster shim</td>
</tr>
</tbody>
</table>
Inspection and Repair

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf, Damage and Wear.</td>
<td>—</td>
<td>More than 15%</td>
<td>Replace</td>
<td>Visual check</td>
</tr>
<tr>
<td>U-bolt, Damage.</td>
<td>—</td>
<td>—</td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Spring Bumper, Wear.</td>
<td>—</td>
<td>—</td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Spring Pin and Shackle, Damage.</td>
<td>—</td>
<td>—</td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Spring Pin Rubber Bushing, Wear.</td>
<td>—</td>
<td>—</td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
<tr>
<td>Inter Leaf, Wear.</td>
<td>1.2 (0.047)</td>
<td>0.6 (0.024)</td>
<td>Replace</td>
<td>Visual check</td>
</tr>
<tr>
<td>Silencer, Wear.</td>
<td>—</td>
<td>—</td>
<td>Replace, if necessary.</td>
<td>Visual check</td>
</tr>
</tbody>
</table>

Unit: mm (in)
INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shock Absorber and Bushing</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Operation, Oil Leak</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilizer Bar.</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Damage.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilizer Sleeve and Bushing</td>
<td></td>
<td></td>
<td>Replace, if necessary.</td>
<td></td>
</tr>
<tr>
<td>Wear.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unit: mm (in)
CHAPTER CF

CHASSIS FRAME

TROUBLESHOOTING ... CF-2
CLEAN THE FRAME ... CF-3
REPLACEMENT OF LOOSEN D RIVETS CF-3
REPAIRING OF FRAME CRACKES CF-4
INSPECTION AND REPAIR CF-7
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame distortion (Vehicle inclination)</td>
<td>Flattening or breakage of springs on one side</td>
<td>Inspection & Replacement of springs</td>
</tr>
<tr>
<td></td>
<td>Incorrect mounting (Attachment of heavy unit on one side of the vehicle)</td>
<td>Improvement of mounting</td>
</tr>
<tr>
<td>Bent frame</td>
<td>Overloading or concentrated load on frame rear end</td>
<td>Improvement of the usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Correction by frame correction device</td>
</tr>
<tr>
<td>Cracking of frame and breaking of rivets</td>
<td>Unappropriate method of body mounting</td>
<td>Improvement of mounting</td>
</tr>
<tr>
<td></td>
<td>Overloading</td>
<td>Improvement of the usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinforcement by stiffener</td>
</tr>
</tbody>
</table>
CLEAN THE FRAME.
NOTE: While inspecting or repairing, stop the vehicle engine and block the wheels. When cleaning sections with a steam cleaner, use safety goggles.

REPLACEMENT OF LOOSENED RIVETS.
1. Drill out the head of the loosened rivet with a drill.
NOTE: When drilling, do not use gloves. They can get caught up in the drill.

2. Ream out the hole with a reamer.

4. If it is impossible to tighten with rivets. Finish the rivet hole with a reamer and tighten with reamer bolts.
NOTE: The tensile strength of the material of the bolts must be above 70 kg/mm² (99,540 psi).

Tightening Torque:
10 mm Bolt 380 – 500 kg.cm (28 – 36 lb.ft)
12 mm Bolt 650 – 870 kg.cm (47 – 62 lb.ft)
14 mm Bolt 1,100 – 1,500 kg.cm (80 – 108 lb.ft)
16 mm Bolt 1,700 – 2,300 kg.cm (123 – 166 lb.ft)
18 mm Bolt 2,500 – 3,300 kg.cm (181 – 238 lb.ft)
20 mm Bolt 3,500 – 4,700 kg.cm (254 – 339 lb.ft)
22 mm Bolt 4,800 – 6,400 kg.cm (348 – 462 lb.ft)
5. Caulk nuts and bolts to prevent loosening.

REPAIRING OF FRAME CRACKS.
1. Perform the procedure for preventing enlargement of cracks.

NOTE: Do not make drill holes on frame flanges except in the case of repairing cracks.

2. Grind the frame to make the V-shaped groove along the crack according to table.

<table>
<thead>
<tr>
<th>t (mm)</th>
<th>α (°)</th>
<th>S (mm)</th>
<th>a (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 (0.18)</td>
<td>90</td>
<td>1.0 (0.039)</td>
<td>0</td>
</tr>
<tr>
<td>6 (0.24)</td>
<td>70</td>
<td>1.0 (0.039)</td>
<td>0</td>
</tr>
<tr>
<td>7 (0.28)</td>
<td>70</td>
<td>1.5 (0.059)</td>
<td>1 (0.039)</td>
</tr>
<tr>
<td>8 (0.31)</td>
<td>70</td>
<td>1.5 (0.059)</td>
<td>1 (0.039)</td>
</tr>
<tr>
<td>9 (0.35)</td>
<td>70</td>
<td>1.5 (0.059)</td>
<td>1 (0.039)</td>
</tr>
<tr>
<td>10 (0.39)</td>
<td>60</td>
<td>1.5 (0.059)</td>
<td>1 (0.039)</td>
</tr>
<tr>
<td>12 (0.47)</td>
<td>60</td>
<td>1.5 (0.059)</td>
<td>1 (0.039)</td>
</tr>
<tr>
<td>16 (0.63)</td>
<td>60</td>
<td>2.0 (0.079)</td>
<td>1 (0.039)</td>
</tr>
</tbody>
</table>

3. Apply electric welding.
Refer to page CF-6 for welding current

WARNING
- Disconnect the negative battery ground cable before using electric welding equipment.
- While welding, make sure that there are no flammable materials such as oil, rags, etc. around. As welded parts becomes extremely hot and sparks are present, make sure that there are no items like harnesses, tubes, pipes, etc. which may be damaged.
- While are welding, ventilate or wear antitoxic mask for noxious gas.
- To prevent burns, electric shock and gas positioning during are welding, wear helmet, antitoxic mask, safety goggles, arm cocering, apron, leg covering, safety boots and gloves.
4. Smooth both surface of the welded section and the face of the flange then reinforce the repaired section with a patch-plate of same thickness as frame.

5. Reinforcement patching method. Sudden sectional change at the end of the reinforcing material may become a cause of damage.

 a. Weld the reinforcement patching according to left figure.
b. Shape of welding bead.

NOTE: An experienced professional should always perform the welding since a bad welding job on the frame may cause damage.

WELDING CURRENT

<table>
<thead>
<tr>
<th>Mechanical property of weld metal & rod</th>
<th>Rod dia (\phi)</th>
<th>Welding current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3.2 mm (0.126 in)</td>
<td>4 mm (0.157 in)</td>
</tr>
<tr>
<td>Weld Metal (Hot roll plate) Tensile strength; 45 kg/mm(^2) (63,990 psi)</td>
<td>Welding position:</td>
<td>Flat Vertical overhead</td>
</tr>
<tr>
<td>Welding Rod (Tensile strength; 43 kg/mm(^2)) Illuminated type Coated electrode</td>
<td>Flat Vertical overhead</td>
<td>Flat Vertical overhead</td>
</tr>
<tr>
<td>Weld Metal (Hot roll plate) Tensile strength; 55 kg/mm(^2) (78,210 psi)</td>
<td>Illuminated type Coated electrode</td>
<td></td>
</tr>
<tr>
<td>Welding Rod (Tensile strength; 50 kg/mm(^2)) Illuminated type Coated electrode</td>
<td>Flat Vertical overhead</td>
<td></td>
</tr>
</tbody>
</table>

| Weld Metal (Hot roll plate) Tensile strength; 45 kg/mm\(^2\) (63,990 psi) | Welding Rod (Tensile strength; 43 kg/mm\(^2\)) Illuminated type Coated electrode |
| Welding Rod (Tensile strength; 50 kg/mm\(^2\)) Illuminated type Coated electrode | Flat Vertical overhead |

NOTE:
- Diameter of welding rod \(\phi 3.2 \) mm or \(\phi 4 \) mm — plate thinner than 5 mm (0.197 in)
- Diameter of welding rod \(\phi 4 \) mm or \(\phi 5 \) mm — plate thicker than 6 mm (0.24 in)
CHASSIS FRAME

INSPECTION AND REPAIR

<table>
<thead>
<tr>
<th>Inspection Item</th>
<th>Standard</th>
<th>Limit</th>
<th>Remedy</th>
<th>Inspection Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Looseness of the Rivet</td>
<td>-</td>
<td>-</td>
<td>Replace the rivet, if necessary. (Refer to page CF-3 for replace the rivet.)</td>
<td>SM18-4</td>
</tr>
<tr>
<td>Cracking of the Frame</td>
<td>-</td>
<td>-</td>
<td>Repair the frame (Refer to page CF-4 for repair the cracks.)</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER EE

ELECTRICAL EQUIPMENT

DATA AND SPECIFICATIONS EE- 2
DESCRIPTION .. EE- 2
TROUBLESHOOTING EE- 4
GENERAL INSTRUCTION EE- 6
BATTERY .. EE-11
STARTING CIRCUIT EE-12
WARNING CIRCUIT EE-15
GAUGE CIRCUIT EE-18
HEAD LAMPS CIRCUIT EE-20
HAZARD, PARK, TAIL AND DIRECTION SIGNAL LAMP CIRCUIT EE-22
FOG LAMP CIRCUIT EE-24
STOP LAMP CIRCUIT EE-25
BACK-UP LAMP CIRCUIT EE-26
HORN CIRCUIT EE-27
WIPER CIRCUIT EE-28
PRE-HEATER CIRCUIT EE-30
ENGINE WARM-UP CIRCUIT EE-31
RADIATOR FAN CIRCUIT EE-33
ELECTRIC WIRING DIAGRAM
DATA AND SPECIFICATIONS

Electrical system
- Voltage: DC24V
- Ground: Negative ground

Headlamp
- Inner: 55W x 2
- Outer: 50/65W x 2

Front combination lamp
- Direction signal: 25W x 2
- Clearance and parking: 5W x 2

Rear combination lamp
- Tail and stop: 25/10W x 2
- Direction signal: 25W x 2

Licence plate lamp
- 12W x 2

Back-up lamp
- 25W x 2

Fog lamp
- 35W x 2

Dome lamp
- 10W

DESCRIPTION

LOCATION OF THE RELAYS

1. Stop lamp relay
2. Tail lamp relay
3. Head lamp relay
4. Flusher unit
5. Intermittent relay
6. Power relay
7. Head/fog switch relay
8. Over heat lamp relay
9. Warm up control relay
ENGINE ROOM ELECTRIC BOX
1. Pre-heat power relay
2. Fuse
3. Fuse
4. Stater safety relay
5. Charge lamp relay
6. Radiator fan relay
7. Radiator fan relay
8. Main relay
9. Fusible link
10. Junction block
11. Fuse
TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>STARTING SYSTEM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine does not crank.</td>
<td>Key switch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Poor contact condition</td>
<td>Polish or replace contacts</td>
</tr>
<tr>
<td></td>
<td>Battery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Discharged battery</td>
<td>Apply charger</td>
</tr>
<tr>
<td></td>
<td>- Short circuited between electrodes</td>
<td>Replace battery</td>
</tr>
<tr>
<td></td>
<td>- Poor contact condition of battery terminal</td>
<td>Polish or retighten</td>
</tr>
<tr>
<td></td>
<td>Engine oil</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Improper viscosity oil</td>
<td>Change oil</td>
</tr>
<tr>
<td></td>
<td>Starter relay</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Defective or poor contact of starter relay</td>
<td>Repair or replace</td>
</tr>
<tr>
<td></td>
<td>Starter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Starter does not operate</td>
<td>Repair or replace Refer to CHAPTER “STARTER”.</td>
</tr>
</tbody>
</table>

<p>| Starter does not stop running. | Key switch | |
| | - Contacts keep closing | Replace |
| | - Key switch sticks | Replace |
| | Starter | |
| | - Overrunning clutch sticks to armature | Repair or replace overrunning clutch or armature |
| | Starter relay | |
| | - Contacts keep closing | Repair or replace |</p>
<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible cause</th>
<th>Remedy/Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEEDOMETER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The numberals of the trip counter are not aligned.</td>
<td>Resetting is not done properly</td>
<td>Carefully press the trip counter knob in all the way</td>
</tr>
<tr>
<td>NOTE: If the trip counter is not reset properly, an error in totaling may occur after driving for a while, make sure resetting is done correctly.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The needle of the speedometer oscillates irregularly. Oscillation is wide at low speeds and becomes narrow as speed increases.</td>
<td>Meter cable bending radius is under 150 mm (5.906 in)</td>
<td>Widen the meter cable bending radius to over 150 mm (5.906 in)</td>
</tr>
<tr>
<td>Meter cable is not connected to the speedometer firmly</td>
<td>Connected firmly</td>
<td></td>
</tr>
<tr>
<td>NOTE: Irregular noises and needle oscillation are usually caused by poor wiring of the meter cable. Therefore, inspect the wiring of the meter cable.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed indicator indicates irregular wear or specifications of the installed (+).</td>
<td></td>
<td>Replace or inflate to correct air pressure</td>
</tr>
<tr>
<td>A clicking sound is heard as the speed of the vehicle increases.</td>
<td>Rubber bushing is not in the meter</td>
<td>Install rubber bushing</td>
</tr>
<tr>
<td>TACHOMETER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does not move, needle vibrates, display is incorrect.</td>
<td>Fuse or fusible link burnt out (When no movement)</td>
<td>Determine cause and replace fuse or fusible link</td>
</tr>
<tr>
<td>Connector for the tachometer is loose or rusted</td>
<td>Polish or retighten</td>
<td></td>
</tr>
<tr>
<td>Connector for the sensor is loose or rusted</td>
<td>Polish or retighten</td>
<td></td>
</tr>
<tr>
<td>No continuity between the terminals of the sensor</td>
<td>Replace sensor</td>
<td></td>
</tr>
</tbody>
</table>
GENERAL INSTRUCTIONS

WARNING
Be sure to disconnect the cable from the negative (—) terminal of the battery before servicing the electrical circuits except for on-vehicle testing.

NOTE: If you use a high-pressure washer, do not direct the washer hose to the electrical parts.

Wiring color

1) Symbol of color
 - B — Black
 - G — Green
 - L — Blue
 - W — White
 - Y — Yellow
 - R — Red
 - Br — Brown
 - Lg — Light green

2) Symbols consisting of two letters
 - The first letter — Ground color
 - The second letter — Marking color

3) Example
 - WB . . . Indicate a Black marking on a White ground.

DISCONNECTING CONNECTORS

1. Hold the connectors, one in each hand, press section P with your thumb, and pull them apart.
 NOTE: Do not pull on the harness.

2. Hold the connectors, one in each hand, raise notch A with your thumb, and pull them apart.
 NOTE: Do not pull on the harness.

3. Hold connector C1 in one hand and C2 in the other. Raise notches A and B with the thumb and finger of one hand, then pull the connectors apart.
 NOTE: Do not pull on the harness.
4. Hold the connector, one in each hand, press section P with your thumb, and pull the connectors apart.

NOTE: Do not pull on the harness.

5. Hold A and B, one in each hand, and pull them apart.

NOTE: Do not pull on the harness.

When testing the continuity or voltage with a circuit tester, insertion of the test lead into the receptacle connector may open the fitting to the connector and result in poor contact. Therefore, ensure that the test lead is inserted only from the harness side as shown.
REPLACING THE TERMINALS
1. Remove the terminal.
 a. Type A
 Insert a miniature screwdriver from the open end and flatten
 the locking lugs then pull the terminal out from the rear.
 b. Type B
 Insert a miniature screwdriver from open end and flatten the
 locking lugs then pull the terminal out from the rear.
2. Install the terminal.
 Push the terminal into the connector.
 NOTE: Make sure that the locking lugs engages with the connector
 body securely.

ELECTRIC GROUNDING
1. General notifications
 ○ All contact area of ground connections should be free of any
 contaminant such as rust, oil or dirt.
 ○ Be sure to remove contaminants, if any, before connecting the
 ground wire.
 NOTE: In connecting a grounding cable, be sure not to fail to
 include the specified toothed washer (see flowing), which
 enables a secure electrical connection.
 ○ Be sure to tighten each bolt/nut to the specified torque.
 Unit: kg·cm (lb·ft)
Bolt diameter	Tightening torque
12 mm (0.472 in)	650 - 870 (48 - 62)
10 mm (0.394 in)	380 - 500 (28 - 36)
8 mm (0.315 in)	190 - 260 (14 - 18)
 ○ Be sure to repaint to finish the ground connection.
 NOTE: In addition to the above, the following instructions for the
 specified groundings should be observed.
2. Engine/Battery grounding
 When connecting a single engine/battery ground:
 1) Remove the paint in the area (A) where the engine/battery
 ground cable contacts the frame member.
 A: Equal to or more than 20 mm (0.787 in) in diameter.
 2) Position the parts in the order shown.
 1 with ground cable outside chassis frame.
2. With ground cable inside chassis frame.

When another ground line is connected along with engine/battery ground.
1) Remove the paint in the manner described above
 A: Equal to or more than 20 mm (0.787 in) in diameter.
2) Position the parts as shown.

3. Cab ground
1) Remove the paint in the area (B) where the cab ground cable contacts the frame member.
 B: Equal to or more than 15 mm (0.590 in) in diameter.
2) Position the parts in the order shown.
NOTE: If the ground cable comes outside the chassis frame, position the parts in reverse order.

4. Air/Vacuum tank

 TYPE 1.
 Grounding by means of ground cable.
 Connect ground cable inside the chassis frame using toothed washers.

 TYPE 2.
 Grounding without ground cable.
 Mount the tank, with tank bracket welded on it, using a toothed washer.
5. Cable-less grounding such as back-up lamp
 Mount the electrical equipment (lamp, etc.) using toothed
 washer(s).

6. Other groundings with ground cable
 Connect ground cable to the chassis frame using toothed
 washer.
Measure the specific-gravity of electrolyte.

NOTE: Specific-gravity of electrolyte varies by temperature. It can be converted into the value that at the reference temperature (20°C) using the following formula:

$$S_{20} = S_t + 0.0007(t - 20)$$

Where,
- S_{20}: Equivalent specific-gravity at reference temperature (20°C)
- S_t: Measured specific-gravity
- t: Temperature of electrolyte when measured

Setting of charging current

The charging current must be the regular charging current specified by the battery manufacturer or approximately 1/10 of the battery capacity.

Setting of charging time

$$T = \frac{B \times C}{A} \times (1.2 \text{ to } 1.5)$$

- T: Charging time (h)
- A: Charging current (A)
- B: Battery capacity (Ah)
- C: Discharge condition (%)

When specific gravity of electrolyte is not measureable with hydrometer,

$$T = 12 \text{ to } 15$$

NOTE: Stop the charging when the electrolyte temperature becoming higher than 45°C. Naked fire kept out when charging the battery.
STARTING CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Starter switch
6. To pre-heat timer
7. Safety switch
8. Safety relay
9. Starter motor
10. To charge lamp and charge lamp relay
11. Alternator

INSPECTION

CHECK THE FUSIBLE LINK
Using an ohmmeter, check that there is continuity between terminals.
If not continuity, replace the fusible link.
NOTE: When fusible link is blown out, the relay also may become malfunctioning due to this current. Check the operation of the relay also.

CHECK THE OPERATION OF THE BATTERY SWITCH.
Using an ohmmeter, check the continuity of the terminals 1 and 2 with on position.
If there is no continuity, replace it.
CHECK THE OPERATION OF THE STARTER SAFETY SWITCH.
Using an ohmmeter, check the continuity of the terminals 1 and 2 with on position. If there is no continuity, replace it.

CHECK THE OPERATION OF THE STARTER SWITCH.
Using an ohmmeter check the continuity of the terminals with each switch position. If there is no continuity between the switch terminals, replace the switch.

CHECK THE OPERATION OF THE SAFETY RELAY.
1. Starter relay
 Switch OFF Lamp not lights
 Switch ON Lamp lights

 NOTE: As semiconductors are installed, (+) and (-) must be connected correctly.
 Complete operation confirmation within 2 minutes.
 Use 24V/20-50W

2. Starter safety device (separation revolution)
 1) Switch ON (Lamp lights)
 2) Gradually increase the alternator revolution.
 3) Confirm the lamp goes out revolution.

 Lamp goes out alternator revolution 1,000 — 1,200 rpm

3. Starter safety device (holding revolution)
 1) Switch ON (Lamp lights)
 2) Increase the alternator revolution to about 1,500 rpm (Lamp goes out)
 3) Gradually decrease the alternator revolution.
 4) Confirm the lamp lights revolution.

 Lamp lights revolution Less than 200 rpm
CHECK THE OPERATION OF THE BATTERY RELAY.

1. Remove the relay.
2. Using an ohmmeter, check that there is no continuity between terminals 3 and 4.
3. Apply 24V D.C. across terminals 1 and 2.
 Using an ohmmeter, check that there is continuity between terminals 3 and 4.
 If the relay does not operate, replace it.
WARNING CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Starter switch
6. Warning lamps
7. Vacuum warning switch
8. Brake fluid level warning switch
9. Engine oil pressure warning switch
10. Coolant level warning switch
11. Tachometer
12. Over run relay
13. Over heat warning lamp
14. Over heat warning lamp relay
15. Over run warning buzzer
16. Over heat warning switch
17. Parking lever switch
18. Tachometer sensor

INSPECTION

ENGINE OIL PRESSURE WARNING
Check the operation of the oil pressure warning switch.
1. Disconnect the connector.
2. Using an ohmmeter, check the continuity between the terminal and ground with the engine stopped (0 ohm) and with the engine running (infinity).
 If not correct, replace the oil pressure warning switch.

BRAKE FLUID LEVEL WARNING
Check the operation of the brake fluid level warning switch.
1. Disconnect the connector.
2. Using an ohmmeter, check the continuity between the terminals, with the float up (infinity) and with the float down, (0 ohm).
 If not correct, replace the reservoir assy.
VACUUM WARNING SWITCH
Check the operation of the vacuum warning switch.
1. Disconnect the connector.
2. Using an ohmmeter, test the continuity between the terminal and ground with vacuum pressure over 400 mm Hg (infinity) and with vacuum pressure under 400 mm Hg (0 ohm).
If not correct, replace the switch.

PARKING BRAKE WARNING
Check the operation of the parking brake switch.
1. Disconnect the connector.
2. Using an ohmmeter, check that there is no continuity between terminals color (B) and (GY).
3. Apply the parking lever and using an ohmmeter, check that there is continuity between terminals color (B) and (GY).
Not correct, replace the switch.

Check the operation of the buzzer switch.
1. Disconnect the connector.
2. Using an ohmmeter, check that there is continuity between terminals color (GL) and (GL).
3. Apply the parking brake and using an ohmmeter, check that there is no continuity between terminals color (GL) and (GL).
If readings are not correct, replace the switch.

CHECK THE OPERATION OF THE OVER HEAT WARNING SWITCH.
Using an ohmmeter, check the continuity between terminals at the indicated water temperatures.
If resistance is not within specifications, replace the switch.

<table>
<thead>
<tr>
<th>Coloured mark</th>
<th>Switch ON</th>
<th>Switch OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>105 – 111°C or higher</td>
<td>101°C or lower</td>
</tr>
</tbody>
</table>
COOLANT LEVEL WARNING
Check the operation of the coolant level warning switch.
1. Remove the coolant level warning switch.
2. Using an ohmmeter, measure the resistance of the switch when the switch is in the "ON (Empty)" and when the switch is in the "OFF (Full the water)".
 If resistance is not correct, replace the switch.

<table>
<thead>
<tr>
<th>Water tank condition</th>
<th>Switch</th>
<th>Tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Empty</td>
<td>ON</td>
<td>0</td>
</tr>
<tr>
<td>B Full the water</td>
<td>OFF</td>
<td>∞</td>
</tr>
</tbody>
</table>

DIODE
Check the operation of the diode with an ohmmeter.
1. Set the resistance range to 1 k ohm.
2. Touch the red and black tester leads and adjust to 0 ohm.
3. When the black lead is placed on the anode and the red lead on the cathode of the diode to be tested, if the tester pointer stops before reaching 0, the diode is satisfactory.
4. On the contrary, when the red lead is placed on the anode and the black lead on the cathode, if the tester pointer does not move, the diode is satisfactory.
GAUGE CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Starter switch
6. Fuel gauge
7. Coolant temperature gauge
8. Coolant temperature sender gauge
9. Fuel sender gauge

INSPECTION

Check the operation of the coolant temperature gauge unit.

Using an ohmmeter, measure the resistance between the terminal and ground at the indicated coolant temperatures. If resistance is not within specifications, replace the gauge unit.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 ± 2.5°C (167 ± 4.5°F)</td>
<td>87.2 Ω</td>
</tr>
<tr>
<td>100 ± 3°C (212 ± 5.4°F)</td>
<td>38.0 Ω</td>
</tr>
</tbody>
</table>
FUEL AND TEMPERATURE GAUGE

Using an ohmmeter, measure the resistance between each terminal of the gauge. If resistance is not within specifications, replace the gauge.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>IGN G-E</th>
<th>FU G-E</th>
<th>IGN F-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
<td>Fuel</td>
<td>400 ± 42Ω</td>
<td>128 ± 13Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Terminal</th>
<th>IGN G-E</th>
<th>T U G-E</th>
<th>IGN T-U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance</td>
<td>Temperature</td>
<td>300 ± 32Ω</td>
<td>90 ± 9Ω</td>
</tr>
</tbody>
</table>

CHECK THE OPERATION OF THE FUEL GAUGE UNIT.

Using an ohmmeter, measure the resistance between the terminal and gauge unit body at the indicated positions. The terminal and gauge unit body at the indicated float positions.

<table>
<thead>
<tr>
<th>Float position</th>
<th>E</th>
<th>1/2</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance (Ω)</td>
<td>150 ± 15</td>
<td>31 ± 3.1</td>
<td>0 ± 2</td>
</tr>
<tr>
<td>Length</td>
<td>LE: 269.6 (10.60)</td>
<td>L 1: 222.5 2 (8.76)</td>
<td>LF: 47.1 (1.85)</td>
</tr>
</tbody>
</table>

Unit: mm (in)
HEAD LAMPS CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Head lamp relay

6. To head fog switch relay
7. Combination switch
8. Head lamp
9. High beam indicator

INSPECTION

CHECK THE OPERATION OF THE LIGHTING SWITCH.

Using an ohmmeter, check the continuity between the terminals with the switch to lighting position.
If not correct, replace the lighting switch.

CHECK THE OPERATION OF THE DIMMER SWITCH.

1. **Low beam (HL)**
 - Using an ohmmeter check the continuity between terminal with the switch to low beam position.
 - At this time, ohmmeter is indicated 0 ohm.
 - If not correct, replace the dimmer switch.

2. **High beam (HU)**
 - Using an ohmmeter check the continuity between terminal with the switch to high beam position.
 - At this time, ohmmeter is indicated 0 ohm.
 - If not correct, replace the dimmer switch.
3. Passing
Using an ohmmeter, check that there is continuity between terminals HU and BP, B and HL with the switch to passing position.
At this time, ohmmeter should be indicated 0 ohm.
If not correct, replace the switch.

CHECK THE OPERATION OF THE HEADLAMP RELAY.
(Main and dimmer)
1. Remove the relay.
2. Using an ohmmeter, check that there is no continuity between terminals (3) and (4).
3. Apply 24V D.C. across terminals (7) and (5).
Using an ohmmeter, check that there is continuity between terminals (3) and (4).
If the relay does not operate, replace it.

ADJUSTMENT OF THE HEADLAMPS.
1. Inner headlamps.
2. Outer headlamps.

INNER HEADLAMPS
1. Mask the outer headlamps.
2. Switch the headlamps to high beam.
3. Turn the adjusting screw and adjust the direction of the beam.

- 10 m (393.7 in)
- Lamp mounting height: H
- Main beam
- Inner headlamp
- Center line of vehicle
- Center distance of inner headlamp

OUTER HEADLAMPS.
1. Switch the headlamps to low beam.
2. Turn the adjusting screw and adjust the direction of the beam.

- 10 mm (393.7 in)
- Lamp mounting height: H
- Main beam
- Outer headlamp
- Center line of outer headlamp
- Main beam
- 30 – 35 cm (11.81 – 17.78 in)
HAZARD, PARK, TAIL AND DIRECTION SIGNAL LAMP CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Tail lamp relay
6. Lighting switch
7. Hazard parking switch
8. Front combination lamp
9. Rear combination lamp
10. Licence lamp
11. To back buzzer
12. Direction signal indicator
13. Direction signal switch
14. Flasher unit

INSPECTION

CHECK THE OPERATION OF THE HAZARD AND PARK SWITCH.

1. OFF POSITION
Using an ohmmeter, check the continuity between terminals with P–T.

2. HAZARD POSITION
Using an ohmmeter, check the continuity between terminals with L₁–L₂ and L₂–L₃.

3. PARK POSITION
Using an ohmmeter, check the continuity between terminals with B–P.
If not correct, replace the switch.
CHECK THE OPERATION OF THE DIRECTION SIGNAL SWITCH.

Using an ohmmeter, check the continuity between terminals F and FL (Direction signal switch to LEFT), F and FR (Direction signal switch to RIGHT).

CHECK THE OPERATION OF THE LIGHTING SWITCH.

Using an ohmmeter, check the continuity between terminals with the switch to each position.
At this time, ohmmeter is indicated 0 ohm.
If not correct, replace the lighting switch.

CHECK THE OPERATION OF THE TAIL LAMP RELAY.

1. Remove the relay.
2. Using an ohmmeter, check that there is no continuity between terminals 3 and 4.
3. Apply 24V D.C. across terminals 1 and 2. Using an ohmmeter, check that there is continuity between terminals 3 and 4.
If the relay does not operate, replace it.
FOG LAMP CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Tail lamp relay
6. Head fog switch relay
7. Fog lamp switch
8. Fog lamp
9. Lighting switch
10. Head lamp relay

INSPECTION

CHECK THE OPERATION OF THE FOG LAMP SWITCH.
Using an ohmmeter, check the continuity between terminals with the switch to fog lamp position.
At this time, ohmmeter is indicated 0 ohm.
If not correct, replace the switch.

CHECK THE OPERATION OF THE HEAD, FOG, SWITCH RELAY.
1. Remove the relay.
2. Using an ohmmeter, check that there is continuity between terminals ① and ③.
3. Apply 24V D.C. across terminals ② and ④.
Using an ohmmeter, check that there is no continuity between terminals ① and ③.
If the relay does not operate, replace it.
STOP LAMP CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Stop lamp relay
6. Stop lamp switch
7. Rear combination lamp

INSPECTION

CHECK THE OPERATION OF THE STOP LAMP SWITCH.

Using an ohmmeter, test the continuity between the terminals with brake pedal free (infinity) and with the brake pedal depressed (0 ohm).
If not correct, replace the switch.

NOTE: The stop lamp switch should be installed so that it automatically comes on when the brake pedal reaches 3 – 4 mm (0.118 – 0.157 in) depression.

CHECK THE OPERATION OF THE STOP LAMP RELAY.

1. Remove the relay.
2. Using an ohmmeter, check that there is no continuity between terminals 3 and 5.
 Using an ohmmeter, check that there is continuity between terminals 3 and 5.
 If the relay does not operate, replace it.
CHECK THE OPERATION OF THE BACK-UP LAMP SWITCH.

Using an ohmmeter, check the continuity between the terminals with the transmission control lever in “NEUTRAL” (infinity) and with the transmission control lever in “REVERSE” (0 ohm).

If not correct, replace the switch.

CHECK THE OPERATION OF THE MAIN RELAY.

1. Remove the relay.
2. Using an ohmmeter, check that there is no continuity between terminals 3 and 5.
 Using an ohmmeter, check that there is continuity between terminals 3 and 5.

If the relay does not operate, replace it.
HORN CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Horn
6. Horn switch

INSPECTION

CHECK THE OPERATION OF THE HORN SWITCH.

Using an ohmmeter, check the continuity between terminal and body earth with the switch button press position. At this time, ohmmeter is indicated 0 ohm. If not correct, repair the horn switch.
WIPER CIRCUIT

1. Wiper motor
2. Intermittent relay
3. Wiper switch
4. Washer
5. Power relay
6. Starter switch
7. Fusible link
8. Battery relay
9. Battery switch
10. Battery

INSPECTION

CHECK THE OPERATION OF THE WIPER SWITCH.

1. OFF position
 Using an ohmmeter, check the continuity between terminals with +1-S.
 If not correct, replace the switch.

2. LO position (I)
 Using an ohmmeter, check the continuity between terminals with +1-L.
 If not correct, replace the switch.
3. **HI position (II)**
 Using an ohmmeter, check the continuity between terminals with +2—L.
 If not correct, replace the switch.

4. **INT position**
 Using an ohmmeter, check the continuity between terminals with +1—S and R—E.
 If not correct, replace the switch.

CHECK THE OPERATION OF THE WASHER SWITCH.

Using an ohmmeter, check the continuity between terminals with +—W in each switch position.
If not correct, replace the switch.
PRE-HEATER CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Starter switch
6. Pre-heater indicator
7. Pre-heat timer
8. Pre-heat power relay
9. Heater plug

CHECK THE RESISTANCE OF THE HEATER PLUG.

Measure the resistance between the terminal and heater plug body.

If not correct, replace the heater plug.

Resistance: About 4.9 Ω at 20°C (68.0°F)

CHECK THE OPERATION OF THE PRE-HEAT POWER RELAY.

1. Remove the relay.
2. Using an ohmmeter, check that there is no continuity between terminals (3) and (4).
3. Apply 24V D.C. source across terminals (1) and (2).
 Using an ohmmeter, check that there is continuity between terminal (3) and (4).
 If the relay does not operate, replace it.
ENGINE WARM-UP CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Starter switch
6. Warm-up switch
7. Accel switch
8. Clutch switch
9. Exhaust brake switch
10. Diode
11. Exhaust brake indicator
12. Exhaust brake vacuum switching valve
13. Idle up vacuum switching valve
14. Warm-up control unit
15. Neutral switch
16. Main relay
17. Alternator

INSPECTION

CHECK THE OPERATION OF THE ENGINE WARM-UP SWITCH.

Using an ohmmeter, check the continuity between terminals with the switch to on position. At this time, ohmmeter is indicated 0 ohm. If not correct, replace the switch.

CHECK THE OPERATION OF THE NEUTRAL SWITCH.

Using an ohmmeter, check the continuity between the terminals with the transmission control lever in "NEUTRAL" (0 ohm) and other each position are infinity. If not correct, replace the switch.

a. Connect the switching valve terminals to the battery terminals as shown.

b. Blow air into port B and check that air comes out of port C.

c. Disconnect the battery connections.

d. Blow air port B and check that air comes out of port A.
RADIATOR FAN CIRCUIT

1. Battery
2. Battery switch
3. Battery relay
4. Fusible link
5. Starter switch
6. Fan motor relay (main)
7. Fan motor relay (sub)
8. Sub radiator fan motor
9. Main radiator fan motor
10. Coolant temperature switch (main)
11. Coolant temperature switch (sub)
12. Main relay
13. Alternator

INSPECTION

CHECK THE OPERATION OF THE COOLANT TEMPERATURE SWITCH (MAIN & SUB).

Using an ohmmeter, check the continuity between terminals at the indicated water temperatures.
If not correct, replace the switch.

<table>
<thead>
<tr>
<th>Coloured mark</th>
<th>Switch ON</th>
<th>Switch OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type: A (brown)</td>
<td>84 – 90°C or higher</td>
<td>82°C or lower</td>
</tr>
<tr>
<td>Type: B (blue)</td>
<td>87 – 93°C or higher</td>
<td>83°C or lower</td>
</tr>
</tbody>
</table>
INSPECTION

CHECK THE OPERATION OF THE FAN MOTOR RELAY.
(MAIN & SUB)

1. Remove the relay.
2. Using an ohmmeter, check that there is no continuity between terminals ③ and ④.
3. Apply 24V D.C. across terminals ① and ②.
Using an ohmmeter, check that there is continuity between terminals ③ and ④.
If the relay does not operate, replace it.
G. MAX. SPEED WARNING CIRCUIT
1. Speedometer
2. Warning buzzer

H. HAZARD, PARK, TAIL, DIRECTION SIGNAL LAMP CIRCUIT
1. Licence lamp
2. Hazard & park switch
3. Flasher unit
4. Direction signal switch
5. Direction signal indicator lamp
6. Front combination lamp
7. Rear combination lamp

I. STOP LAMP CIRCUIT
1. Stop lamp switch
2. Stop lamp relay
3. Fuse

J. WIPER CIRCUIT
1. Intermittent relay
2. Wiper switch
3. Fuse
4. Power relay
5. Wiper motor
6. Washer

K. HORN CIRCUIT
1. Horn
2. Horn switch
3. Fuse
Q. FRONT HEATER CIRCUIT
1. Heater panel illumination
2. Heater switch
3. Fuse
4. Blower motor

R. STEP LAMP CIRCUIT
1. Step lamp
2. Door relay

S. REAR HEATER CIRCUIT
1. Blower
2. Heater switch
3. Fuse
4. No. 2 heater
5. No. 1 heater
6. Door pump
7. Rear heater switch

T. RADIATOR FAN CIRCUIT
1. Coolant temperature switch (for sub)
2. Coolant temperature switch (for main)
3. Sub-radiator fan motor
4. Main radiator fan motor
5. Fan relay (for main)
6. Fan relay (for sub)

U. OVER HEAT WARNING CIRCUIT
1. Over heat warning lamp switch
2. Over heat warning lamp relay
3. Diode
4. Over heat warning lamp